
The Icfai University

System Analysis and Design

The Icfai University Press

System Analysis and Design

© The Icfai University Press. April 2009, All rights reserved.

No part of this publication may be reproduced, stored in a retrieval

system, used in a spreadsheet, or transmitted in any form or by any

means – electronic, mechanical, photocopying or otherwise – without

prior permission in writing from The Icfai University Press. Plot # 52,

Nagarjuna Hills, Hyderabad - 500 082.

Ref. No. SA&D 042009PG171INTRL – 110320045UG071INTRL-TB –

111092004UG056**22

For any clarification regarding this book, the students may please write to the Icfai University Press

giving the above reference number of this book specifying chapter and page number.

While every possible care has been taken in type-setting and printing this book, the Icfai University

Press welcomes suggestions from students for improvement in future editions.

Contents

Chapter I : Overview of IS Development 1

Chapter II : Requirements Analysis 30

Chapter III : System Design 69

Chapter IV : System Testing and Implementation 105

Chapter V : Object-Oriented System Development Life Cycle 122

Chapter VI : UML Models 149

Chapter VII : Object-Oriented Analysis 173

Chapter VIII : Object-Oriented Design 202

Bibliography 228

Glossary 229

Detailed Curriculum

Overview of IS Development: Concept of a System – Categories of Information Systems – Users

of Information Systems – Role of a System Analyst – System Development Approaches –

Structured Analysis Development Method – Systems Prototype Method – Tools for Systems

Development – Structured Approach – CASE Tools.

Requirements Analysis: Stakeholder – Software Requirements Analysis – Requirements

Determination – Fact-Finding Techniques – Joint Application Design – Structured Walkthrough –

Analyzing and Documenting Requirements – Tools for Documenting Procedures and Decisions –

Structured Analysis – Data Flow Diagram – Data Dictionary – Entity-Relationship Diagrams –

Software Requirements Specification.

System Design: Design Objectives – Designing an Information System – Design Specifications –

System Flowcharts – Structured Flowcharts – Database Design – File Organization – Design of

Computer Output – Design of Input – User Interface Design – Designing Interfaces and Dialogues –

Coupling and Cohesion.

System Testing and Implementation: System Verification – System Validation – Software

Testing – Installing a System – Training and Training Methods – Conversions – Post-

Implementation Review – System Audit.

Object-Oriented System Development Life Cycle: Software Development Process – Object-

Oriented Systems Development – Object-Oriented Analysis – Object-Oriented Design –

Prototyping – Component-Based Development – Incremental Testing – Reusability – Object-

Oriented Methodologies – Unified Approach – Modelling based on the Unified Modelling

Language.

UML Models: Static and Dynamic Models – Unified Modeling Language – The Meta-Model –

Use-Case Diagrams – Activity Diagrams – Interaction Diagrams – Sequence Diagrams –

Collaboration Diagrams – Class Diagrams – Object Diagrams – State Chart Diagrams –

Implementation Diagrams – Component Diagrams – Deployment Diagrams.

Object-Oriented Analysis: Use Case Model – Developing Effective Documentation –

Approaches for Identifying Classes – Identifying Attributes and Methods – Defining Attributes by

Analyzing Use Cases and Other UML Diagrams.

Object-Oriented Design: Object-Oriented Design Process – Designing Classes: Refining

Attributes – Designing Methods and Protocols – Object Storage and Persistence – User Interface

Design.

 1

Chapter I

Overview of IS Development
After reading this chapter, you will be conversant with:

 Concept of a System

 Categories of Information Systems

 Users of Information Systems

 Role of a System Analyst

 System Development Approaches

 Structured Analysis Development Method

 Systems Prototype Method

 Tools for Systems Development

 Structured Approach

 CASE Tools

 System Analysis and Design

2

Systems development has two major components: systems analysis and systems
design. Systems design is the process of planning a new business system or
replacing an existing system. Systems analysis undertaken by system analysts, is
the process of gathering and interpreting facts, diagnosing problems and using
information to recommend improvements to the system.

For example, consider the stockroom operations of a cloth store. In order to control
its inventory and gain access to more up-to-date information about stock levels and
reordering, the stores manager takes the help of a system analyst to computerize its
stockroom operations. Before the system analyst can design a system to capture
data, update files and produce reports, he needs to know the current state of
operations: the various forms that are being used to store information manually,
such as requisitions, purchase orders, invoices, and the types of reports, if any, that
are being prepared.

Then, information about lists or reorder notices, outstanding purchase orders,
records of stock on hand and other reports are examined. One needs to find out
the source of this information, that is, whether the information is originating in
the purchasing department, stockroom or the accounting department. This means
one must understand how the existing system works and, more specifically, how
the flow of information through the system is structured. It must be known as to
why the store wants to change its current operations. Does the business have
problems tracking orders, merchandise, or money? Does it seem to fall behind in
handling inventory records? Does it need a more efficient system before it can
expand operations?

Only after these facts have been collected, one can determine the way a computer
information system can benefit all the users of the system. This accumulation of
information, called systems study, must precede all other activities.

Systems analysts not only solve current problems but also handle the planned
expansion of a business. Analysts assess the future needs of the business and the
changes that should be considered to meet these needs.

Working with managers and employees in the organization, systems analysts
recommend which alternative to adopt, based on such factors as the suitability of
the solution to the particular organizational setting. They also make the employees
familiar with the system so as to gain their support for the solution. The time
required to develop an alternative may be the most critical issue. Costs and
benefits are also determinants. Finally, management takes a decision regarding the
selection of the best possible alternative.

Once this decision is made, a plan is developed to implement the recommendation.
The plan includes all systems design features such as capture of particular type of
data, file specifications, operating procedures, and equipment and personnel needs.
Systems design is like the blueprint for a building which specifies all the features
that are to be present in the finished product.

Designs for the stockroom will provide ways to capture data about orders and sales
to customers and specify the way the data will be stored, whether on paper forms
or on a medium such as magnetic tape or disc. The designs will also specify the
work to be performed by people and computers.

The stockroom personnel will also need information about the business. Each
design describes output to be produced by the system, such as inventory reports,
sales analysis, purchasing summaries and invoices. The systems analysts will
actually decide the type of outputs to be produced.

 Overview of IS Development

3

Analysis also specifies the tasks to be performed by the system. Design states how
to accomplish the objective. Each of the processes involves people. Managers and
employees are familiar with what works and what does not, what flows smoothly
and what causes problems, where change is needed and where it is not, and
especially where change will be accepted and where it will not. Despite
technology, it is the people who make the organizations work. Thus,
communicating and dealing with people are the important parts of the system
analyst’s job.

1. CONCEPT OF A SYSTEM
Systems are created to solve problems. One can think of the systems approach as
an organized way of dealing with a problem. In the field of information
technology, the subject System Analysis and Design mainly deals with the
software development activities.

System analysis and design for information systems had its origin in general
systems theory. General systems theory is concerned with developing a systematic,
theoretical framework upon which decisions are made. It encourages taking into
account all the activities of an organization and its external environment. The idea
of systems has become most practical and necessary in conceptualizing the
interrelationships and integration of operations, especially when using computers.
Thus, a system is a way of thinking about organizations and their problems in total
perspective.

1.1 Definition of System
The term system is derived from the Greek word systema, which means “an
organized relationship among functioning units or components”. A system comes
into existence because it is designed to achieve one or more objectives. The
common definition is “a collection of components that work together to realize
some objective”. The objective of a system is to produce some output as a result
of processing suitable inputs.

The word component may refer to physical parts (engines, wings of aircraft,
wheels of a car), managerial functions (planning, organizing, directing, and
controlling), or a subsystem in a multilevel structure. The components may be
simple or complex, basic or advanced. The components are independent. In a
system, the different components are connected with each other and have to do
their share of work for the system to achieve the intended goal. This orientation
requires an orderly grouping of the components for the design of a successful
system.

For example, human body represents a complete natural system. A single
computer with a keyboard, memory and a printer or a series of intelligent terminals
linked to a mainframe is known as a computer system. In either case, each
component is part of the total system.

A business is another example of a system. Its components are marketing,
manufacturing, sales, research, shipping, accounting and personnel, all working
together to achieve profitability that benefits the employees and stockholders of
the firm. Each of these components in itself, constitutes a system. For example, the
accounting department may consist of accounts payable, accounts receivable,
billing, auditing, and so on.

Figure 1 illustrates the concept of a system together with its interrelated elements,
applied to a business situation. The interrelationship is important to successful
operation of systems.

 System Analysis and Design

4

Figure 1: System’s Concept Applied to a Business Situation

The study of systems concept has three basic implications:

i. A system must be designed to achieve a predetermined objective.

ii. Interrelationships and interdependence must exist among the components.

iii. The objectives of an organization as a whole have precedence over the
objectives of its subsystems.

Every business system depends to some extent on an abstract entity called an
information system. Information means data that has been selected and processed
in response to a question. Information systems serve all the systems of a business,
linking the different components in such a way that they effectively work towards
the same purpose.

1.2 Characteristics of a System

Following are the characteristics of a system:

 Organization

 Interaction

 Interdependence

 Integration

 Central objective.

i. Organization: It implies the structure and order in the arrangement of the
components that help to achieve objectives. For example, in the design of the
business system, the hierarchical relationship starting with the president on
the top and moving towards the workers at the bottom represents the
organizational structure. Such an arrangement defines the authority structure,
specifies the formal flow of communication and formalizes the chain of
command. An example of such a structure is shown in figure 2.

 Overview of IS Development

5

Figure 2: Example of an Organizational Structure

ii. Interaction: It represents the relationships among the components of the

system i.e., the manner in which each component interacts with other
components. For example, in a computer system, the Central Processing Unit
(CPU) must interact with the input device to obtain input data. In an
organization, the purchase department must interact with the production
department; the advertising department must interact with the sales
department and so on.

iii. Interdependence: Interdependence means that parts of an organization
depend on one another. They are coordinated and linked according to a plan.
The output of one subsystem serves as an input for another subsystem for
proper functioning. Figure 3 shows three levels of subsystems. Each of the
top inner circles represents a major subsystem of a production firm. The
subsystems of the production firm are production, marketing, finance and
administration, personnel, and so on. The personnel subsystem may be
viewed as consisting of other subsystems such as labor section, training
section, health and safety section and so on. Again, the health and safety
subsystem consists of the lower-level elements, such as insurance benefits
reports, unemployment reports, labor distribution reports and so on.

Figure 3: Levels of Subsystems

 In a nutshell, no subsystem can function in isolation because it is dependent

on the data it receives from other subsystems to perform its required tasks.

 System Analysis and Design

6

iv. Integration: Integration is concerned with the way the system is bound
together i.e., parts of the system work together within the system even though
each part performs a unique function. Successful integration will typically
produce greater total impact than if each component works separately.

v. Central objective: Objectives may be real or stated. It is not uncommon for
an organization to state one objective and work practically on another
objective. The important point is that users must know the central objective
of a computer application early in the analysis for successful design and
conversion.

1.3 Elements of a System
In most cases, the system analyst operates in a dynamic environment where change
is a way of life. The following key elements must be considered for constructing
a system:

 Components

 Interrelated components

 Boundary

 Purpose

 Environment

 Interfaces

 Input

 Output

 Constraints.

Figure 4 depicts the various elements of a system. The arrows in the figure show
the interaction between the system and the world outside of it known as
environment.

Figure 4: Elements of System

Let us discuss about these elements in detail:

i. Components: A component is an irreducible part or aggregation of parts that
make up a system. It is also called a subsystem. A system is made up of
components. A component has all the characteristics of a system. For
example, we can repair or upgrade an automobile or a stereo system by
changing individual components without having to make changes to the
entire system in total.

ii. Interrelated Components: The components are interrelated i.e., the
dependence of one part of the system on one or more other parts of the
system. For example, producing a daily report of customer orders received
may not progress successfully until the work of another component is
finished.

 Overview of IS Development

7

iii. Boundary: Boundary is the line that demarcates the system from its
environment and that sets off one system from other systems in the
organization. Components within the boundary can be changed whereas
systems outside the boundary cannot be changed.

iv. Purpose: Purpose is the overall goal or function of a system. All the
components work together to achieve some overall purpose for the larger
system.

v. Environment: A system exists within an environment. An environment is
everything that lies outside the system’s boundary and interacts with the
system. For example, the environment of ICFAI University includes
prospective students, foundations and funding agencies, higher education
department of the government, and the print and electronic media. An
information system interacts with its environment by receiving and sending
data and information.

vi. Interfaces: The points at which the system meets its environment or where
the subsystems meet one another are called interfaces.

vii Input and Output: Inputs are the elements that enter the system for
processing. Output is the outcome of the processing. A system feeds on input
to produce output in much the same way that business brings in human,
financial and material resources to produce goods and services. Determining
the output is the first step in specifying the nature, amount and regularity of
the input needed to operate a system.

vii. Constraints: Constraint is a limit to the extent to which a system can
accomplish its goals. A system faces constraints because there are limits to its
abilities and also its purpose within its environment. Some of the constraints
arise within the interior of the system while others are imposed by the
environment. For instance, a production system is constrained if the
availability of electricity is irregular.

1.4 System Models
A model is a representation of a real or a planned system. The use of models
makes it easier for the analyst to visualize relationships in the system. The
objective is to point out the significant elements and the key interrelationship of a
complex system. The system analyst begins by creating a model of a real system.
For example, a telephone switching system is made up of subscribers, telephone
handsets, dialing, conference calls, etc. The analyst begins by modeling these
elements before considering the functions that the system would perform. The
major system models are discussed here:

 Schematic Models: It is a two-dimensional chart representing the system
elements and their linkages.

 Flow System Models: It shows the logical order among the system elements.

 Static System Models: It exhibits one pair of relationships such as activity-
time or cost-quantity.

 Dynamic System Models: It represents an ongoing, constantly changing
system. It consists of,

a. Inputs that enter the system,

 b. The Processor through which transformation takes place,

 c. The programs required for processing, and

 d. Outputs that result from processing.

 System Analysis and Design

8

1.5 Types of Systems
Systems have been classified in different ways. Some common classifications are:

 Physical and Abstract.

 Open and Closed.

 Information Systems.

i. Physical and Abstract Systems: Physical systems are tangible (real) entities
that may be static or dynamic in operation. For example, the physical parts of
a computer center are the offices, desks and chairs that facilitate operation of
the computer center. They can be seen and counted; they are static. In
contrast, a programmed computer is a dynamic system. Data, programs,
output, and applications change based on the user’s demands or the priority
of the information requested. Abstract systems are conceptual or
non-physical entities. They may be as straightforward as relationships among
sets of variables or models.

ii. Open and Closed Systems: To achieve its purpose, a system interacts with
its environment, which includes the entities outside the boundary of the
system. Systems that interact with their environments (receive input and
produce output), are open systems. In contrast, systems that do not interact
with their environments are closed systems. All systems presently operating
in nature are open. Thus, closed systems exist only as a concept. In systems
analysis, organizations, applications and computers are invariably open
dynamic systems influenced by their environment.

 System analysis for an open system tends to expand the scope of analysis so
as to include relationships between the user area and other users and also the
environmental factors that must be considered before a new system is finally
approved. Being open to suggestions implies that the analyst has to be
flexible and the system being designed has to respond to the changing needs
of the user and the environment. Figure 5 distinguishes between open and
closed systems.

Figure 5: Open and Closed Systems

Figure 5(a): Open System

 5(b): Closed System

 Characteristics of an open system:

 Input from Outside – Inputs received from outside are self-regulating
and self-adjusting. When functioning properly, an open system reaches
a steady state or equilibrium.

 Entropy – All dynamic systems are depleted over time due to entropy
or loss of energy. Open systems resist entropy by seeking new inputs or
modifying the processes to return to a steady state.

 Process, Output and Cycles – Open systems produce useful output and
operate in cycles following a continuous flow path.

 Overview of IS Development

9

 Differentiation – Open systems differentiate their components. This
characteristic motivates system analysts to incorporate open system
concept in their thinking.

 Equifinality – It implies that goals are achieved through differing
courses of action through a variety of paths.

 Understanding system characteristics helps analysts to identify their role and
relate their activities to the attainment of the firm’s objective as they
undertake a system project.

iii. Information Systems: Computerized Information System (IS) is a collection
of computer personnel, components and procedures used and designed to
provide services, collect, process, and store data, and disseminate
information. Computer systems that store data and supply information often
rely on databases, i.e., a system that is designed to capture, transmit, store,
retrieve, manipulate, and, or display information used in one or more
business processes. The subject area of information systems includes an
understanding of:

 Businesses/organizations – their aims, management, structure and
methods of working.

 The intended use of information systems within organizations.

 The information technology used in information systems.

 The process and techniques of analyzing and designing an information
system.

 The professional, legal, social and ethical issues involved in the
application of information systems and information technology.

 Qualities of information.

The information that is supplied to the managers through information systems
must have the following qualities:

i. Information must be accurate i.e., the correctness of the input data and that
of the processing rules should be ensured so that the resulting information is
accurate. The information should be complete i.e., it should include all data
that is needed.

ii. It should also be trustworthy. The processing should not hide some vital
information which may, for example, point out the inefficiency of some
individuals.

iii. Information should be timely. It should be given to the manager when he
needs it. Delayed information may sometimes be of no value. For example, if
a daily newspaper is delivered a day later, it would lose its importance.

iv. Information should also be up-to-date. It should include all data available at
the time of processing. A newspaper delivered in time early in the morning
but reporting old news is timely but not up-to-date.

v. Information should be tailored to the needs of the user and be relevant.
Massive volumes of irrelevant information would waste a lot of manager’s
time and there is a danger of bypassing important relevant information.

vi. It is essential to give brief summarized information to ensure quick action.

vii. The information should be presented in real time and at the place it is needed,
in such a way that its significance is immediately perceived. For example,
presentation of information in a graphical form such as bar chart or pie chart,
ensures quick recognition of the significance of the information. It is also
essential to present the information in an attractive format which a user can
immediately understand.

 System Analysis and Design

10

The information system present in an organization can be seen as an intermediary
between the business and the information technology infrastructure of the
organization. Examples of commonly used information systems are:

 Payroll: This system starts with details of employees and their rates of pay,
and processes this data to produce bank transfers, pay slips, etc. The payroll
system also provides information on, for example, the payroll cost of staff in
various departments and grades within the organization.

 Office Automation Systems: Office Automation Systems (OAS) try to
improve the productivity of employees by automating data and information
processing. Perhaps the best example is the wide range of software systems
that exist to improve the productivity of employees working in an office
(e.g., Microsoft Office XP) or systems that allow employees to work from
home or during their travel.

 Order Processing: The main input transaction is the customer order which is
processed using customer and product data to output the delivery note and
invoice transactions. In addition to processing the business transactions, the
system can produce a wealth of management information on what is being,
sold, the profile of customers and the overall sales totals for each month and
year.

Examples of organizations having their own information systems are:

i. A supermarket with its sales and stock replenishment system.

ii. A manufacturing company with its Materials Requirement Planning
(MRP) and production control systems.

iii. A college or university with its student registration and records system.

In addition to these central systems on which the operations of the organizations
depend, there will be a number of other systems for functions such as marketing,
accounts, customer came and so on. Some of these applications will be formal
information systems and some will make use of standard desk top packages.

2. CATEGORIES OF INFORMATION SYSTEMS

Most businesses require different types of information. Senior managers need
information to help in their business planning. Middle management needs more
detailed information to help them monitor and control business activities.
Employees with operational roles need information to help them carry out their
duties. As a result, businesses tend to have several types of information systems
operating at the same time. System analysts develop different types of information
systems to meet a variety of business needs.

2.1 Transaction Processing Systems
As the name implies, Transaction Processing Systems (TPS) are designed to
process routine transactions efficiently and accurately. Transaction is an
elementary activity conducted during business operations such as merchandise
sale, airline reservation, credit-card purchase, or inquiry about inventory.
Transaction Processing Systems are process oriented.

Transaction Processing Systems (TPS), also referred to as Online Transaction
Processing (OLTP) systems, capture data, store it reliably and securely in a
database, and retrieve it when requested.

A business will have several types of TPS. Some examples are:

Billing systems to send invoices to customers.

Systems to calculate the weekly and monthly payroll and tax payments.

Production and purchasing systems to calculate raw material requirements.

Stock control systems to process all movements into, within and out of the
business.

 Overview of IS Development

11

The common characteristics of different types of transactions are:
There is a high volume of transactions.

Each transaction is similar.

The procedures for processing the transactions are well-understood and can be
described in detail.

Few exceptions to the normal procedures occur.

These characteristics allow routines to be established for handling the transactions.
The routines describe the substance in each transaction, the steps to be taken, the
procedures to be followed and the action to be taken when exceptions occur.
Transaction processing procedures are often called standard operating
procedures.

Consider the example of an Automated Teller Machine (ATM) system that allows
the teller to use a computer terminal to enter details of the transaction while the
customer is at the bank window. The procedures are built into the computer
software that runs the system. Similarly, when customers make withdrawals at
automated teller machines, the software used to operate the system ensures that the
following procedure is followed:

Customer Activity System Activity

Enters account number Verifies that the account number is correct.
Enters password Verifies that the password is valid for the

account.
Enters withdrawal amount i. Verifies that the amount is within limits set

by the bank.
 ii. Verifies that the account has balance.
 iii. Records transaction in ledger.
 iv. Dispenses money.
 v. Issues receipt for transaction.
Removes receipt and money Prepares for next transaction.

This activity is repeated many times in a single day at most ATMs.

Transaction processing systems provide speed and accuracy, and can be
programmed to follow routines without any variance. System analysts design the
systems and the processes to handle activities such as bank transactions, ticket
bookings etc.

2.2 Management Information Systems
Management Information System (MIS) is mainly concerned with the
organization’s internal sources of information. Management Information Systems
usually take data from the transaction processing systems and summarize it into
a series of management reports. MIS reports tend to be used by middle
management and operational supervisors. Transaction systems are operations-
oriented, whereas Management Information Systems are data-oriented. MIS assists
managers in decision-making and problem-solving.

A key element of MIS is the database. In any organization, decisions must be
made on many issues that persist regularly (weekly, monthly, quarterly, etc.) and
require a certain set of information to make the decision. Because the decision
process is well understood, the information that will be needed to formulate
decisions can be identified. In turn, the information system can be developed so
that reports are prepared regularly to support these recurring decisions.

The decisions supported by MIS are structured decisions. This means managers
know what factors to consider in making the decision and which variables most
significantly influence the outcome of the decisions. System analysts develop
well-structured reports containing the information that is needed for the decisions

 System Analysis and Design

12

or that tells the state of the important variables. The primary users of MIS are
middle and top management, operational managers and support staff. Once entered
into the system, the information is in the public domain of all authorized users.

A management information system, or management reporting system, will feature
reports based on the transaction level activities. For instance, regular reports on
deposits and withdrawals in total and by branch office are routinely used by bank
officers to keep informed on the performance of individual branches, to monitor
the ratio of loans made to deposits received, the level of cash reserves, interest
paid to depositors and other common performance indicators.

The information is often combined with other external information such as details
about economic trends, demand for loans, rate of consumer spending and cost of
borrowing. Bank managers can make informed decisions about the rate of interest
they will charge the following week for various types of loans or about whether
they must raise the interest rates they pay customers to attract more deposits. The
need to make each of these decisions recurs frequently and the information needed
to formulate the decisions is also prepared regularly.

Most of the MIS reports are historical and tend to be outdated. Many installations
have databases that are not in line with user requirements. An inadequate or
incomplete update of the database raises the reliability issues for all the users.

2.3 Decision Support Systems
Decision Support Systems (DSSs) are specifically designed to help
managements make decisions in situations where there is uncertainty about the
possible outcomes of those decisions. A decision is considered unstructured if
there are no clear procedures for making the decision and if not all the factors to
be considered in the decision can be readily identified in advance. DSSs
comprise tools and techniques to help gather relevant information and analyze
the options and alternatives. DSSs are used in data warehouses and Executive
Information Systems (EIS).

A key factor in the use of decision support systems is determining what
information is needed. In well-structured situations it is possible to identify
information needs in advance, but in an unstructured environment it is difficult to
do so. As information is acquired, the manager may realize that additional
information is required, that is, having information may lead to the realization of
other requirements.

Consider the decision process followed by banking officers who must decide
whether to begin offering cash management accounts or installing automatic teller
machines – both completely new banking services. The many questions that will
arise are: What will each service cost? How many teller locations will be needed?
How will the competitors respond to this? What limits should be placed on
withdrawls at any point of time? Can a charge be imposed for this service? Will
this service result in additional deposits and thus more cash inflow for the bank?

In such cases, it is impossible to pre-design system report formats and contents.
A decision support system must therefore have greater flexibility than other
information systems. The user must be able to request reports by defining their
content and even by specifying how the information is to be produced. Similarly,
the data needed to develop the information may originate from many different files
or databases, rather than from a single master file, as is often the case with
transaction systems and many reporting systems.

Subjective managerial judgment plays a vital role in decision-making where the
problem is not structured. The decision support system supports, but does not
replace, managerial judgment.

Information systems are expressly designed to support individual and collective
decision-making by making it possible to apply decision models to large
collections of data. These systems are designed to support the decision-making
process rather than render a decision.

 Overview of IS Development

13

2.4 Expert Systems
Expert Systems are man-machine systems with specialized problem-solving
expertise. The “expertise” consists of knowledge about a particular domain,
understanding of problems within that domain, and “expertise” at solving some of
these problems. Present day expert systems deal with the domains of narrow
specialization.

The primary goal of research in expert systems is to make expertise available to
decision makers and technicians who need answers quickly. Enough expertise is
not always available at the right place and the right time. Portable computers
loaded with in-depth knowledge of specific subjects can bring and apply decade’s
worth of knowledge as a solution to a problem. The same systems can assist
supervisors and managers with situation assessment and long-range planning.
Many small systems now exist that bring a narrow slice of in-depth knowledge to
a specific problem and provide evidence that the broader goal is achievable.

These knowledge-based applications of Artificial Intelligence (AI) have enhanced
productivity in business, science, engineering and military. With advances in the
last decade, today’s expert systems clients can choose from dozens of commercial
software packages with easy-to-use interfaces. Each new deployment of an expert
system yields valuable data thus fueling the AI research that provides even better
applications.

2.5 Scope of Information Systems
The scope of information systems includes:

 Effective utilization of information technology in organizational context.

 Interdependencies of information technologies and organizational structure,
relationships and interaction.

 Evaluation and management of information systems.

 Analysis, design, construction, modification and implementation of
computer-based information systems for organizations.

 Management of knowledge, information, and data in organizations.

 Information systems applications in organizations such as transaction
processing, routine data processing, decision support, office support,
computer-integrated manufacturing, expert support, executive support and
support for strategic advantage plus the coordination and interaction of such
applications.

 Relevant research and practice from associated fields such as computer
science, operations management, economics, organizational theory, cognitive
science, knowledge engineering and systems theory.

3. USERS OF INFORMATION SYSTEMS
The degree of involvement of the managers and employees in an organization
interacting with information systems is different and it depends on the type of the
user. The end-users refer to people who are not professional information systems
specialists but who use computers to perform their jobs. There are four types of
end-users:

 Hands-on End-users: They actually interact with the system by feeding
input data and receiving output. For example, clerical staff at computerised
airline reservation counters use terminals to query the system about
passenger, flight, and ticket information.

 Indirect End-users: They benefit from the results or reports produced by
these systems but do not directly interact with the hardware or software.
These users may be functional managers of business functions using the
system. For example, marketing managers make use of sales analysis
applications that result in monthly reports.

 System Analysis and Design

14

 User Managers: They manage application systems like managers. These
users may be upper-level managers for business functions that make use of
information systems extensively. While user managers may not actually use
the systems directly or indirectly, they retain authority to approve or
disapprove investment in the development of applications and have
organizational responsibility for the effectiveness of the systems (in the same
way that a vice president of marketing is responsible for the success of all
sales and marketing programs). These upper-level users must be involved in
major systems development efforts.

 Senior Managers: They take increased responsibility for the development of
information systems. The best-managed organizations consider the possible
impact and benefit of information systems when formulating their
organization’s competitive strategy.

All four types of end-users are important. Each has essential information about
how the organization functions and where it is going. System analysts are often the
ones who supply the ideas – the imagination – about ways to use computers
effectively. The analysts collect information about a business system that forms
the basis for the design of a new system or for modifying an existing one.

The characteristics of different end-users are different. Some may have never used
a computer, others are intermittent users, and still others may interact daily with
information system. Each group must be able to use the information system easily
and in a timely manner when required, even though its use may not be part of their
daily routine. At the same time, the features of the systems required to meet the
needs of the infrequent user (such as the capability to receive extra assistance)
should not impede the frequent users. Analysts strive to balance systems features
to suit the needs of all potential users.

The end-user can also be a competitor, not an employee of the firm. For example,
some information systems are used by airline travel agents or corporate purchasing
agents who have terminals linked to a suppliers’ computer. Additional
considerations must be built into the system for this type of end-user interaction
with the system and to make sure that only the necessary information reaches the
end-user while there is no breach of organization’s information systems.

Users are becoming highly involved in systems development for several reasons.
They are:

 Users have accumulated experience from working with applications that were
developed for them earlier. They have better insight about the information
content generated by these systems in a specific format and also the manner
in which the desired information can be obtained. If they have experienced
systems failures, they have also formed ideas about avoiding problems.

 Microcomputers, in the form of workstations, personal computers, or home
computers, and software that meet the user needs, whether for business
requirements or personal management necessities, have become common.

 Users entering business organizations have college or university training in
various aspects of information systems, often in systems analysis and design.

 The applications being developed in organizations are becoming complex.
System analysts need the continual involvement of users to understand the
business functions.

 Better systems development tools are emerging. Some allow users to design
and develop applications without involving trained system analysts.

 Overview of IS Development

15

4. ROLE OF A SYSTEM ANALYST
A System Analyst is a person responsible for studying the requirements,
feasibility, cost, design, specification and implementation of a computer-based
system for an organization/business.

Systems analysts solve computer problems and enable computer technology to
meet individual needs of an organization. They help an organization realize the
maximum benefit from its investment in equipment, personnel and business
processes. This process may include planning and developing new computer
systems or devising ways to apply existing systems’ resources to additional
operations. System analysts may design new systems, including both hardware and
software, or add a new software application to harness more of the computer’s
power. Most systems analysts work with a specific type of system that varies with
the type of organization they work for – for example, business, accounting or
financial systems, or scientific and engineering systems.

Analysts begin an assignment by discussing the problem with managers and users
to determine its exact nature. They define the goals of the system and divide the
solutions into individual steps and separate procedures. Analysts use techniques
such as structured analysis, data modeling, information engineering, mathematical
model building, sampling and cost accounting to plan the system. They specify the
inputs to be accessed by the system, design the processing steps and format the
output to meet the users’ needs. They also may prepare cost-benefit and Return-
on-Investment (ROI) analyses to help management decide whether implementing
the proposed system will be financially feasible.

When a system is accepted, analysts determine the type of computer hardware and
software that will be needed to set it up. They test and determine the initial use of
the system to ensure it performs as planned. They prepare specifications, work
diagrams and structure charts for computer programmers to follow and then work
with them to “debug” or eliminate errors from the system. Analysts performing in-
depth testing of products may be referred to as software quality assurance analysts.
In addition to running tests, these individuals diagnose problems, recommend
solutions and determine if program requirements have been met.

5. SYSTEM DEVELOPMENT APPROACHES
Computer information systems serve many different purposes. The factors to be
considered in an information systems project are the most appropriate aspect of the
computer or communications technology to be applied, the impact of a new system
on the people in a firm, and the special features the system should have. These
aspects can be determined in a sequential fashion. The experience must be gained
through experimentation and staged evolution of a system.

Systems development as a process starts when the management or systems
development personnel realize that a particular business system needs improvement.
We can represent three distinct approaches to the development of computer
information systems:

i. Systems Development Life Cycle Method (SDLC).

ii. Structured Analysis Development Method.

iii. Systems Prototype Method.

We shall discuss each approach, focusing on the characteristics and the conditions
under which it is likely to have the highest value to the organization.

5.1 Systems Development Life Cycle
Systems Development Life Cycle (SDLC) is a logical process by which system
analysts, software engineers, programmers and end-users build information
systems and computer applications to solve business problems and needs. First, it
is necessary to determine what the problem is (analysis), then figure out a good
approach for solving it (design), and finally put in practice the approach
(implementation). It is sometimes called as application development life cycle.

 System Analysis and Design

16

Systems development life cycle means combination of various activities. In other
words, we can say that various activities put together are referred to as system
development life cycle. System Development Life Cycle (SDLC) is a conceptual
model used in project management that describes the stages involved in an
information system development project, from an initial feasibility study through
maintenance of the completed application.

SDLC comes in two basic types:

 The waterfall or linear approach implies that one step follows another in a
sequence. Previously, older systems were developed using the waterfall
model. A major problem is, it assumes that all the analysis can be done
without doing any design or implementation. This is not possible for a
complex system.

 The fountain or iterative approach implies that you do some analysis, then
some design, and then some implementation. Based on what you learn, you
cycle back through and do more analysis. This supports human learning a lot
better. This approach is followed for projects in present times.

In general, the SDLC methodology follows the following steps:

 The existing system is evaluated to identify deficiencies. This can be done by
interviewing users of the system and consulting with support personnel.

 The new system requirements are defined. In particular, the deficiencies in
the existing system must be addressed with specific proposals for
improvement.

 The proposed system is designed. Plans are laid out concerning the physical
construction, hardware, operating systems, programming, communications,
and security issues.

 The new system is developed. The new components and programs must be
obtained and installed. Users of the system must be trained in its use, and all
aspects of performance must be tested. If necessary, adjustments must be
made at this stage.

 The system is put into use. This can be done in various ways. The new
system can be gradually installed according to application or location, and the
old system gradually replaced. In some cases, it may be more cost-effective
to shut down the old system and implement the new system all at once.

 Once the new system is up and running for a while, it should be
exhaustively evaluated. Maintenance must be kept up rigorously at all
times. Users of the system should be kept up-to-date concerning the latest
modifications and procedures.

Systems Development Life Cycle Method consists of the below given six
activities:

i. Preliminary investigation.

ii. Determination of system requirements.

iii. Designing of system.

iv. Development of software.

v. Systems testing.

vi. Implementation and evaluation.

The six phases in the system development life cycle can be identified by different
names. Also, there are no definite rules regarding what must be included in each of
the six phases. The different phase of software development life cycle are shown
in figure 6. Let us now describe the different phases and the related activities of
systems development life cycle in detail.

 Overview of IS Development

17

Figure 6: Activities in Systems Development Life Cycle

5.1.1 PRELIMINARY INVESTIGATION

Preliminary investigation is the first phase of SDLC. Feasible system requests are
evaluated in terms of cost and benefits. The purpose of Preliminary Investigation
is not to develop a system, but to gather enough information to determine if the
next phase is warranted. This phase is typically very short, usually not more than a
day or two for a big project, and in some instances, it can be as little as two hours.
This activity has three parts:

i. Request Clarification: Requests from employees and users in organizations
are not clearly stated. The requests should have the following characteristics:

 – Easy to understand.

 – Include clear instructions.

 – Should have all the supporting documents.

 – Spacious – enough space to enter the data.

 – Make it available on-line (if possible and feasible).

ii. Feasibility Study: Feasibility study is basically the test of the proposed
system in light of its workability, meeting user’s requirements, effective use
of resources and of course, the cost effectiveness. The main goal of feasibility
study is not to solve the problem but to determine the extent to which it is
possible to construct the system. In the process of feasibility study, the cost
and benefits are estimated with greater accuracy. It has three types:

 – Operational Feasibility: This feasibility addresses questions like: Does
the proposed system align with the company's goals? What will be the
impact of the System on the employees? Is there enough
support/enthusiasm in the company for the proposed System?

 – Technical Feasibility: Does the company have enough technical
resources, both human/non-human, to run the proposed system? If not,
can the company acquire them?

 – Economic Feasibility: Will the proposed system increase revenues
either directly or indirectly?

 The above study must be conducted before the System Request can be
approved/rejected.

 Example: A software engineer working in a software development center
comes up with the following proposal: “Buy 10 water filters/purifiers costing
Rs.3500 each, and start delivering pure water to homes”.

 Looking at this system request, it is evident that this project will have an
upfront cost of Rs.35,000 – hence economically feasible.

 Filtering water and then delivering it to homes is a straight forward task, and
anyone can do it – hence technically feasible.

 System Analysis and Design

18

 Even though supplying pure drinking water is technically feasible without
much complexity, the software company should not undertake this project
because this does not align with the company's goals, and there will be no
support for it from the employees. Therefore, the request should be denied
based on its operational unfeasibility. People typically responsible for
feasibility assessments are experienced analysts or managers.

iii. Request Approval: Some organizations receive so many project requests
from employees that only a few of them can be pursued. Those projects that
are both feasible and desirable should be put into a schedule. After a project
request is approved, its cost, priority, completion time and personnel
requirements are estimated and used to determine where to add it to any
existing project list.

5.1.2 DETERMINATION OF SYSTEM REQUIREMENTS AND PROJECT PROPOSAL
In this we study the problem, deficiency or new requirement in detail.
Requirement is a statement of what the system or part of the system should do.
Depending upon the size of the project being undertaken, this phase could be as
short as the preliminary investigation, or it could take months.

Analysis involves a detailed study of the current system, leading to specifications
of a new system. Analysis is a detailed study of various operations performed by a
system and their relationships within and outside the system. During analysis, data
are collected on the available files, decision points and transactions handled by the
present system. Interviews, on-site observations and questionnaires are the tools
used for system analysis. Based on the guidelines given below, it becomes easy to
draw the exact boundary of the new system under consideration:

 Considering the problems and new requirements.

 Working out the pros and cons including new areas of the system.

All procedures and requirements must be analyzed and documented in the form of
detailed Data Flow Diagrams (DFDs), data dictionary, logical data structures and
miniature specifications. System analysis also includes sub-dividing complex
processes involving the entire system, identification of data store and manual
processes.

The main points to be discussed in system analysis are:

 Specification of what the new system is to accomplish based on the user
requirements.

 Functional hierarchy showing the functions to be performed by the new
system and their relationship with each other.

 Functional network, which is similar to functional hierarchy but highlight the
functions which are common to more than one procedure.

 List of attributes of the entities – these are the data items which need to be
held about each entity (record).

The Requirements statement should list all of the major details of the program.

Project Proposal

After completing the analysis for the proposed system, the next step is the
preparation of project proposal. Depending upon the size and importance of the
project, the proposal may be long and detailed or relatively short and focused. The
proposal that is presented in the given form and format must highlight the
advantages of the project to the organization and its users in clear and precise
terms without any ambiguity. It must present the facts which support the proposed
project and highlight the goals that would be achieved with the completion of the
project. It must also bring to light the positive changes that would happen in the
organization once the new system would come into existence with the completion
of the project. The proposal must instill confidence in the minds of the readers who

 Overview of IS Development

19

would have the authority to sanction the funds. For this to happen it is necessary
that the proposal should emphasize that the proposed project is the best course of
action keeping in mind the various risks and alternatives. The contents of the
proposal include the following:

 A statement that defines the business problem being solved;

 The chosen solution, explaining why it was chosen and briefly indicating the
other alternatives;

 A description of how the new system will work and its impact on external
clients and internal users;

 Justification for choosing the preferred alternative and its economic, technical
and operational advantages;

 The duties that different people in the organization will have to perform in
order to implement the solution; and

 The impact of the proposed project on the way people work, including any
new skills that people have to learn and the way of learning additional skills.

5.1.3 DESIGN OF SYSTEM
Based on user requirements and detailed analysis, the new system must be
designed. The design of an information system produces the details that state how
a system will meet the requirements identified during systems analysis. It is the
most crucial phase in the development of a system. Normally, the design proceeds
in two stages:

 Preliminary or general design.

 Structure or detailed design.

i. Preliminary or General Design: In the preliminary or general design, the
features of the new system are specified. The costs of implementing these
features and the benefits to be derived are estimated. If the project is still
considered to be feasible, we move to the detailed design stage.

ii. Structure or Detailed Design: In the detailed design stage, computer
oriented work begins in earnest. At this stage, the design of the system
becomes more structured. Structure design is a blue print of a computer
system solution to a given problem having the same components and inter-
relationship among the same components as the original problem. Input,
output and processing specifications are drawn up in detail. In the design
stage, the programming language and the platform in which the new system
will run are also decided.

There are several tools and techniques used for designing. These tools and
techniques are:

 Flowchart

 Data Flow Diagram (DFD)

 Data dictionary

 Structured English

 Decision table

 Decision tree.

5.1.4 DEVELOPMENT OF SOFTWARE
Software developers install purchased software or they may write new, custom-
designed programs. The choice depends on:

 Cost,

 Availability of time, and

 Availability of programmers.

 System Analysis and Design

20

After designing the new system, the whole system is required to be converted into
a language that would be understood by a computer. This is known as coding into
an appropriate computer language. It is an important stage where the defined
procedures are transformed into control specifications with the help of a computer
language. This is also called the programming phase in which the programmer
converts the program specifications into computer instructions, which we refer to
as programs. The programs coordinate the data movements and control the entire
process in a system.

It is generally felt that the programs must be modular in structure. This helps in
fast development, maintenance and future change, if required.

5.1.5 SYSTEMS TESTING
Before actually implementing the new system into operations, a test run of the
system is done removing all the bugs, if any. It is an important phase of a
successful system. After codifying the whole programs of the system, a test plan
should be developed and run on a given set of test data. The output of the test run
should match the expected results. Different test runs are carried out.

When it is ensured that the system is running error-free, the users are called with
their own actual data so that the system could be shown running as per their
requirements.

5.1.6 IMPLEMENTATION AND EVALUATION
After having the user acceptance of the new system developed, the implementation
phase begins. Implementation is the stage of a project during which theory is
turned into practice. During this phase, all the programs of the system are loaded
onto the user’s computer. After loading the system, training of the user starts. The
training should help the user to know:

 How to execute the package

 How to enter data

 How to process data (processing details)

 How to take out reports.

After the users are trained about the computerized system, manual working has to
shift to computerized working. The following two strategies are followed for
running the system:

– Parallel run: In parallel run both the systems i.e., computerized and manual,
are executed in parallel for a certain defined period. This strategy is helpful
because:

 Manual results can be compared with the results of the computerized
system.

 Failure of the computerized system at the early stage does not affect the
working of the organization, because the manual system continues to
work as it used to do.

– Pilot run: In this type of run, the new system is installed in parts. Some parts
of the new system are installed first and executed successfully for
considerable time period. When the results are found satisfactory, then only
other parts are implemented. This strategy builds the confidence and the
errors are traced easily.

When the implementation report is submitted, an evaluation should be made to
determine whether the system meets the objectives stated in the general design
report. In this phase, users may be able to suggest easy-to-implement improvements.
The actual evaluation can occur along any of the following dimensions:

 Operational Evaluation

 Organizational Evaluation

 User Manger Assessment

 Development Performance.

 Overview of IS Development

21

As in the six phase development life cycle, the project can be dropped at any point
prior to implementation. A project may be dropped if the benefits derived from the
proposed system do not justify commitment of the needed resources or if the cost
is higher than expected.

6. STRUCTURED ANALYSIS DEVELOPMENT METHOD
The structured analysis development methods are based on functional
decomposition and stepwise refinement which also involves the breaking down of
complex systems into single-function tasks and subtasks. These techniques were
the first to evolve. The analysis part (data flows) tended to concentrate on the
business flow (which was generally manual in the beginning). The data was simple
(integers, float/real, and characters), but the processing was typically complex. The
early methods were used both for MIS and real-time systems. Extensions of these
methods (e.g., Structured Analysis of Real-Time Systems) gave more support for
real-time systems and concurrent processing. It consists of elements of both
analysis and design.

6.1 Structured Analysis
It is a set of techniques and graphic tools that allow the analyst to develop a new
kind of system specification that is easily understandable to the user. Hence, it
focuses on specifying what the system is required to do. It does not state how the
requirements should be accomplished. It allows seeing logical elements apart from
the physical components. It is useful for top down decomposition of the high level
system functions. It captures the system structure as perceived by the user.

Elements of structured analysis include:

 Graphical Symbols.

 Data Flow Diagrams.

 Data Dictionary.

6.1.1 GRAPHICAL DESCRIPTION
Structured Analysis uses symbols or icons to create a graphical model of the
system. Graphical models show details of the system without introducing manual
or computer processes, tapes or disk files, or program and operating procedures.

As figure 7 indicates, the icons identify the basic elements of processes, data
flows, data stores, data sources and destinations. A line is drawn around the system
to indicate the elements included within the system and those outside the
boundary.

Figure 7

 System Analysis and Design

22

6.1.2 DATA FLOW DIAGRAMS
Data flow diagrams are the most commonly used methods of documenting the
process and current & required systems. As the name suggests, they are a pictorial
way of showing the flow of data into, around and out of a system.

Graphical representation of a system’s data and how the processes transform the
data is known as Data Flow Diagram (or DFD). Unlike flowcharts, DFDs do not
give detailed descriptions of modules but graphically describe a system’s data and
how the data interact with the system. DFDs are constructed using four major
components i.e., external entries, data stores, processes and data flows.

We know that structure analysis follows top-down process. Each process can be
broken down into a yet more detailed data flow diagram. This may occur
repeatedly until sufficient detail is given to allow the analyst to fully understand
the portion of the system under investigation.

Figure 7 shows the first and second level for a portion of a system. The focus is on
data and processes.

6.1.3 DATA DICTIONARY

All definitions of elements in the system i.e., data flows, processes and data stores
are described in detail in a data dictionary.

6.2 Structured Design
Structured design makes use of graphical description for the development of
software specifications. The functions that are identified during structured
analysis are mapped on to a modular structure. Top-down decomposition
approach is used for successively breaking down the system functions into
modules. These modules are then mapped on a structure, which, in turn, is
implemented with some programming language. The goal of the structured
design is to create programs consisting of independent modules that perform
relatively independent of one another.

The fundamental tool of structured design is the structure chart. An example of
structure chart is shown in figure 8. Structured charts are graphical representations
and avoid specification of hardware or physical details. They describe the
interaction between independent modules and the data passing between modules
that interact with one another.

Figure 8: An Example of a Structure Chart

In figure 8, the top module is called COMPUTE-SALES-TOTAL. This module
calls three lower-level program modules to accomplish its task.
READ-SALES-TRANSACTION module is called to read individual sales
transaction. ADD-TO-TOTAL model is called to sum the amount in each
transaction and OUTPUT-TOTAL module is called to output the sum.

7. SYSTEMS PROTOTYPE METHOD
The systems prototype method involves the user more directly in the analysis and
design experience than does the SDLC or Structured Analysis and Structured
Design. It is useful only if it is employed at the right time and appropriate manner.

A Prototype is a working model of an actual system that is constructed in order to
explore implementation or processing alternatives and evaluate results.

 Overview of IS Development

23

7.1 Reasons for Using Systems Prototype
There are two major problems with building information systems:

 SDLC is a long drawn process, and

 The right system is rarely developed the first time.

Lengthy development effort and tedious methodologies for developing systems
frustrates both the users and the system analysts. The reason they often come up
with the wrong system is that they expect the users to define their information
requirements. It usually turns out that what they want is not what they need.

Although the prototype is a working system, it is designed to be easily changed.
Information gained through its uses is applied to a modified design that may again
be used as prototype to reveal more valuable design information. The process is
repeated as many times as necessary to reveal design requirements.

System analysts find prototypes to be most useful under the following conditions:

 No system with the characteristics of the one proposed has yet been
constructed by the developers.

 The essential features of the system are only partially known; others are not
identifiable even after careful analysis of requirements.

 Experience in using the system will significantly add to the list of
requirements the system should meet.

 Alternate versions of the system will evolve through experience and
additional development and refinement of its features would take place.

 The system user will participate in the development process.

 Systems prototyping is an interactive process. It may begin with only a few
functions and be expanded to include others that are identified later.

The steps involved in the Prototyping process are:

 Identify the user’s information and operating requirements.

 Develop a working prototype that focuses on only the most important
functions using a basic database.

 Allow the user of the prototype to discuss requested changes and implement
the most important changes.

 Repeat the next version of the prototype with further changes incorporated
until the system fully meets the user’s requirements.

The prototyping process is given in figure 9.

Figure 9: Prototyping Process

Prototyping should not be considered a trial-and-error development process. The
analyst works with the users to determine the initial or basic requirements for the
system. The analyst then quickly builds a prototype. When the prototype is
complete, the users work with it and tell the analyst their additional requirements
or changes. The analyst uses this feedback to improve the prototype and develops
the new version. This iterative process continues until the users are relatively
satisfied with the model.

 System Analysis and Design

24

Usually one of the following four alternatives is selected:

i. The prototype is redeveloped: This alternative may mean complete
reprogramming from scratch.

ii. The prototype is implemented as the completed system: Performance
efficiency and methods for user interaction may be sufficient to allow the
system to be used as it is.

iii. The prototype is abandoned: The prototype has provided enough indication
that a system cannot be developed to meet the desired objectives within the
existing technology or economic or operational guidelines.

iv. Another prototyping series has begun: The information gained through
current experience may suggest an entirely different approach.

 Each alternative is viewed as a successful result of prototyping.

Advantages of Prototyping Technique are:

 It involves the user in analysis and design, and

 It captures requirements in concrete, rather than verbal or abstract form.

8. TOOLS FOR SYSTEMS DEVELOPMENT
A tool is any device that improves the performance of a task, such as the
development of a computer information system. The tools can be of three types –
Analysis tools, Design tools, and Development tools.

8.1 Analysis Tools
Analysis tools assist systems specialists in documenting an existing system,
whether manual or automated, and determining the requirements for a new
application. These tools include:

 Data Collection Tools: Details should be captured describing current
systems and procedures. Processes and decision activities should be
documented and used in requirements identification.

 Charting Tools: Graphic representations of systems and activities are
created. Data Flow Diagrams and icons associated with structured analysis
are used in drawing and revision. Flowcharting programs are also included.

 Dictionary Tools: Descriptions of system elements such as data items,
processes and data stores are recorded and maintained. These tools also provide
capabilities to examine inconsistent or incomplete system’s descriptions. The
capabilities to report where items are used are also included.

Most useful tools in each of these categories are becoming automated, both to
improve the efficiency of the analyst and to make the results of the analysis effort
more accurate and complete.

8.2 Design Tools
Design tools help in formulating the features of a system that will meet the
requirements outlined during the analysis activities. These tools include:

 Specification Tools: These tools are used to specify the features that should
be included in an application such as input, output, processing, and control
specifications. Tools for creating data specifications are also included.

 Layout Tools: These tools are used to describe the position of data,
messages, and headings on display screens, reports and other input and
output media.

Analysts have used tools for the design of systems since the early days of
computing. The recent infusion of computer assistance and powerful graphics is
giving new meaning to systems design.

 Overview of IS Development

25

8.3 Development Tools

Development tools aid the analyst in translating designs into functioning
applications. These tools include:

 Software Engineering Tools: These tools are used for formulating software
designs, including procedures and controls, as well as documentation for the
design are assisted.

 Code Generators: These are used to produce source code and working
applications from functional specifications that are well articulated.

 Testing Tools: These tools are used for evaluating a system or portion of a
system against specifications. Evaluations for correct operation, as well as for
completeness in comparison with expectations are carried out.

The infusion of computer processing, coupled with sophisticated design practices,
is dramatically altering the manner in which design specifications are translated
into working information systems.

9. STRUCTURED APPROACH

A Structured approach to systems design not only provides cutting-edge data tools
of structured analysis and design, but also presents traditional techniques such as
interviewing and forms design. Its goal is to create an integrated methodology by
combining the best elements of new and traditional technologies. The tools and
techniques of analysis and design are dependent on the way they are used in
business applications. Structured Approaches are SDLC, RAD, Spiral Model, etc.

9.1 Information Engineering Approach
The Information Engineering (IE) approach provides a more formal framework for
planning top-down systems development, with the development flowing down
a number of successive stages. These stages involve identifying the global
information needs and then mapping on to these the requirements for gathering,
managing, accessing and processing the information.

9.2 Object-Oriented Approach
During object-oriented analysis, the emphasis is on finding and describing the
objects – or concepts – in the problem domain. Take the example of library
information system, where some of the concepts include Book, Library, and Patron.

During object-oriented design, there is an emphasis on defining software objects and
how they collaborate to fulfill the requirements. For example, in the library system, a
software object named Book may have a title attribute and a get Chapter method.

10. CASE TOOLS
CASE stands for Computer-Aided Systems Engineering. Many definitions and
descriptions of CASE exist. The general definition of CASE is:

“CASE is the use of computer-based support in the software development
process.” This definition includes all kinds of computer-based support for any of the
managerial, administrative or technical aspects of any part of a software project.

Since the early days of writing software, there has been an awareness on the need
for automated tools to help the software developer. Initially, the concentration was
on program support tools such as translators, compilers, assemblers, macro
processors, linkers and loaders. However, as computers became more powerful
and the software that was used along with it grew larger and more complex, the
range of support tools also began to expand. In particular, the use of interactive
time-sharing systems for software development encouraged the development of
program editors, debuggers, code analyzers and program-pretty printers.

 System Analysis and Design

26

As computers became more reliable and useful, the need for a broader notion of
software development became apparent. Software development came to be
viewed as:

 A large-scale activity involving significant effort to establish requirements,
design an appropriate solution, implement that solution, test the solution's
correctness, and document the functionality of the final system.

 A long-term process producing software that requires enhancement through-
out its lifetime. The implications of this are the structure of the software must
enable new functionality to be added easily, and detailed records of the
requirements, design, implementation and testing of the system must be kept
to aid maintainers of the software. In addition, multiple versions of all
artifacts produced during a project must be maintained to facilitate group
development of software systems.

 A group activity involving interaction among a number of people during each
stage of the development process. Groups of people must be able to
cooperate in a controlled manner and have consistent views on the state of
the project.

Large-scale programming resulted in a wide range of support tools being
developed. Initially, the tools were not very sophisticated in their support.
However, two important advances had the effect of greatly improving the
sophistication of these tools:

 Research in the area of software development processes gave rise to a
number of software design methods (e.g., the Jackson Structured
Programming and the Yourdon Method) that could be used as the basis for
software development. These methods were ideally suited in an environment
which provided the support of automated tools which required step-by-step
adherence to methods, had graphical notations associated with them, and
produced a large number of artifacts (e.g., diagrams, annotations, and
documentation) that needed to be recorded and maintained.

 Personal workstations and personal computers have relatively large
memory storage capacities, fast processors, and sophisticated bit-mapped
graphic displays that are capable of displaying charts, graphical models,
and diagrams.

All the above mentioned tools may be referred to as CASE tools and posit the
following definition:

“A CASE tool is a computer-based product aimed at supporting one or more
software engineering activities within a software development process.”

The most common distinctions between CASE tools are:

 Between those tools that are interactive in nature (such as a design method
support tool) and those that are not (such as a compiler). The former classes
are sometimes called CASE tools, while the latter classes are called
development tools.

 Between those tools that support activities early in the life cycle of a software
project (such as requirements and design support tools) and those that are
used later in the life cycle (such as compilers and test support tools). The
former classes are sometimes called front-end CASE tools and the latter are
called back-end CASE tools.

 Between those tools that are specific to a particular life-cycle step or domain
(such as a requirements tool or a coding tool) and those that are common
across a number of life-cycle steps or domains (such as a documentation tool
or a configuration management tool). The former classes are sometimes
called vertical CASE tools, while the latter classes are called horizontal
CASE tools.

 Overview of IS Development

27

However, there are certain problems associated with these distinctions. In the first
case, it is difficult to give a simple and consistent definition of ‘interactive’ that is
meaningful. For example, some classes of compilers prompt the user for
information. In the second and third cases, there is an assumption about the
methods and approaches in use (e.g., object-oriented software development, or
prototype-oriented development).

10.1 Case Environment
The first generation of CASE tool developers concentrated to a large extent on the
automation of isolated tasks such as document production, version control of
source code, and design method support. While successes have been achieved in
supporting such specific tasks, the need for these ‘islands of automation’ to be
connected has been clearly recognized by many first generation CASE tool users.
For example, a typical development scenario requires that designs be closely
related to their resultant source code, that they be consistently described in a set of
documentation, and that all of these artifacts be under centralized version control.
The tools that support the individual tasks of design, coding, documentation, and
version control must be integrated if they are to support this kind of scenario
effectively. These tools are more often used as components in a much more
elaborate software development support infrastructure that is available to software
engineers. A typical CASE environment consists of a number of CASE tools
operating on a common hardware and software platform. There are different
classes of users of a CASE environment. Some users, such as software developers
and managers, wish to make use of CASE tools to support them in developing
application systems and monitoring the progress of a project. On the other hand,
tool integrators are responsible for ensuring that the tools operate on the software
and hardware platform available, and the system administrator’s role is to maintain
and update the hardware and software platform itself.

It is to be noted that software developers, tool integrators, and system
administrators interact with multiple CASE tools and environment components
that form the software and hardware platform of the CASE environment. The
interactions among the different components of CASE environment and also
between the users and these components feature prominently in a CASE
environment. In many respects, the approach towards the management, control,
and support of these interactions distinguishes one CASE environment from
another. We can define a CASE environment by emphasizing the importance of
these interactions.

A CASE environment is a collection of CASE tools and other components
together with an integration approach that supports most or all of the interactions
that occur among the environment components and between the users of the
environment and the environment itself.

A critical part of this definition is that the interactions among environment
components are supported within the environment. What distinguishes a CASE
environment from a random amalgamation of CASE tools is that there is some
thing that is provided in the environment that facilitates interaction of those tools.
This ‘something’ may be a physical mechanism such as a shared database or a
message broadcast system, a conceptual notion such as a shared philosophy on tool
architectures or common semantics about the objects the tools manipulate, or a
combination of these things.

 System Analysis and Design

28

The range of possible ways of providing the ‘glue’ that links CASE tools together
inevitably leads to a spectrum of approaches to implementing a CASE
environment. One of the main points we make in this book is that there are many
ways to build a CASE environment. While many people concentrate on the
selection of CASE tools and components when assembling a CASE environment,
they largely ignore the need to support the interactions among those components.
We concentrate less on which components should be chosen and much more on
how the selected components can be made to work together effectively. Whether a
chosen approach to component interaction is appropriate in a given context will
depend on many overlapping factors: the needs of the organization in question, the
available resources, and so forth.

The use of CASE tools brings the following benefits:

 Enhancing existing applications.

 Complete, accurate and consistent performance of the system.

 Reducing human effort.

 Integrated development.

 Speed of development.

 Links to object-oriented approaches.

SUMMARY

 Systems analysis and design for businesses is the process of studying a
business situation to see how it operates and whether improvement is
needed – systems study is conducted to learn the details of the current
business situation. Information gathered through the study forms the basis of
creating alternative design strategies. The Management selects the strategy to
pursue. As managers employees, and other end-users are familiar with
computing, they are having a greater role in systems development.

 Systems analysis and design is the application of the systems approach to
problem solving, generally using computers. To reconstruct the system, the
analyst must consider its elements – inputs, outputs, components, constraints,
feedback and environment. Virtually all organizations are systems that
interact with their environment through receiving inputs and producing
outputs. Systems, which may consist of other smaller systems called
subsystems, operate to accomplish specific purposes. However, the purposes
or goals are achieved only when control is maintained. In open systems that
interact with their environment, performances are evaluated against
standards. The results (feedback) are useful in adjusting systems activities to
improve performance.

 System analysts play a key role in systems development. They maintain
relationship with business users on one hand and technical personnel on the
other. Analysts need to develop analytical skills, technical skills, managerial
skills and interpersonal skills to succeed.

 Transaction processing systems, also referred to as Online Transaction
Processing (OLTP) systems, have as their basic purpose the capturing of
data, storing it reliably and securely in a data-base, and retrieving it from this
database when requested.

 Overview of IS Development

29

 Management Information System (MIS) is mainly concerned with internal
sources of information. MIS usually takes data from the transaction
processing systems and summarizes it into a series of management reports.
MIS reports tend to be used by the middle management and operational
supervisors. Transaction systems are operations-oriented whereas
Management Information Systems (MIS) are data oriented. It assists
managers in decision-making and problem solving.

 Decision-Support Systems (DSS) are specifically designed to help the
management make decisions in situations where there is uncertainty about the
possible outcomes of those decisions. A decision is considered unstructured
if there are no clear procedures for making the decision and if not all the
factors to be considered in the decision can be readily identified in advance.
Decision-Support System comprises tools and techniques to help gather
relevant information and analyzes the options and alternatives. DSS often
involves in data warehouses, and Executive Information Systems (EIS).
Decision-support systems are data and decision logic oriented.

 Expert Systems are man-machine systems with specialized problem-solving
expertise. The “expertise” consists of knowledge about a particular domain,
understanding of problems within that domain, and “skill” at solving some of
these problems.

 The components of information systems include hardware, software and data
stores in files and databases. Information system applications are the
procedures, programs, files, and equipment – all carefully integrated to
accomplish specific purposes.

 There are three systems development strategies: the classical systems
development life cycle method, structured analysis development method, and
the systems prototype method. All the three development strategies are in
widespread use in organizations of all types and sizes, and each is effective
when properly used. Analysts are responsible for developing information
systems that are useful to the management and employees in business
systems. The systems development life cycle, includes preliminary
investigation, collection of data, determination of requirements, designing of
a system, development of software, systems testing, and implementation.
Several of these activities may be going on concurrently, since different parts
of the system may vary in their degree of completion.

 Structured Analysis is a set of techniques and graphic tools that allow the
analyst to develop a new kind of system specification that is easily
understandable to the user. DFDs show the flow of data into the system and
between processes and data stores.

 Structured Design utilizes graphic description, and focuses on the
development of software specifications. It identifies the functions during the
structured analysis and mappes on to a modular structure.

 A Prototype is a working system to explore processing alternatives and
evaluate results.

 Systems analysts rely on a wide variety of tools to fulfill their responsibilities.
When properly applied, important tools of analysis, design, and development
can each contribute substantially to the usefulness of a system.

 A CASE environment is a collection of CASE tools and other components
together with an integration approach that supports most or all of the
interactions that occur among the environment components and between the
users of the environment and the environment itself.

Chapter II

Requirements Analysis
After reading this chapter, you will be conversant with:

 Stakeholder

 Software Requirements Analysis

 Requirements Determination

 Fact-Finding Techniques

 Joint Application Design

 Structured Walkthrough

 Analyzing and Documenting Requirements

 Tools for Documenting Procedures and Decisions

 Structured Analysis

 Data Flow Diagram

 Data Dictionary

 Entity-Relationship Diagrams

 Software Requirements Specification

 Requirements Analysis

31

Systems approach is an organized way of dealing with a problem. Systems
Analysis and Design mainly deals with software development activities. Systems
analysis is a systematic investigation of a real or planned system to determine the
functions of the system, the relationship between functions, and the linkages with
other systems. It is an explicit formal inquiry carried out to help a decision maker
identify a better course of action and make a better decision than he might
otherwise have made. Systems analysis is used when complex issues have to be
dealt with and where there is an uncertainty with regard to the outcome of any
course of action.

Systems analysis consists of the following:

 Identification and re-identification of objectives, constraints and alternative
courses of action.

 Examination of the probable consequences of the alternatives in terms of
costs, benefits and risks.

 Presentation of the alternative results in a comparative framework so that the
decision maker can make an informed choice.

Systems analysis is used to guide decisions on issues such as national or corporate
plans and programs, the use of resources and protection policies, research and
development in technology, regional and urban development, educational systems,
and health and other social services. Interdisciplinary approach is needed to solve
these problems.

There are several specific types of systems analysis for different situations:

 A systems analysis related to public decisions is often referred to as a policy
analysis.

 A systems analysis that concentrates on comparison and ranking of
alternatives on the basis of their known characteristics is referred to as
decision analysis.

 The part or aspect of systems analysis that concentrates on finding out
whether an intended course of action violates any constraints is referred to as
feasibility analysis.

 Cost-effectiveness analysis is a study where for each alternative the time
stream of costs and the time stream of benefits (both in monetary units) are
discounted.

Systems analysis and design for information systems has its origin in general
systems theory. General systems theory is concerned with developing a
systematic and theoretical framework for making decisions. It encourages
consideration of all the activities of an organization and its external
environment. The systems concept has become most practical and necessary in
conceptualizing the interrelationships and integration of operations, wherever
computers are being used. Thus, we can say that a system is a way of thinking
about organizations and the problems facing them.

1. STAKEHOLDER

Stakeholder is a person who has a share or an interest in an enterprise. It can be
said that a company is responsible towards all of its stakeholders. Stakeholders are
people who cast their influence upon the company and in turn get influenced by
the company. This means that a business has to fulfill the aspirations of many
different people ranging from the local population and customers to its own
employees and owners. In the present competitive world of business, it is
perceived that the stakeholder concept improves the image of a firm and makes it
less vulnerable to the issues raised by the pressure groups.

 System Analysis and Design

32

In traditional input-output models of a corporation, the firm gets inputs from
investors, employees and suppliers, and converts these inputs into outputs. In this
process, the firm also makes profit. In this model, firms only address the needs and
wishes of four parties: investors, employees, suppliers and customers.

In contrast to the input-output model, stakeholder theory recognizes that there are
other parties such as governmental bodies, political groups, trade associations,
trade unions, communities, associated corporations etc., that are also involved, or
have stake in the working of the firm. This view of the firm is used to define the
specific stakeholders of a corporation as well as examine the conditions under
which these parties should be treated as stakeholders. These two questions are
important in the stakeholder theory.

Stakeholders in a project are those entities within or outside an organization
which:

a. Sponsor a project, or

b. Have an interest or make profit when a project is completed successfully.

Business analysts are also needed to identify the business needs of the firms or
corporations to help devise appropriate strategies to take advantage of the
opportunities and also find solutions to business problems.

2. SOFTWARE REQUIREMENTS ANALYSIS
Software requirements analysis involves obtaining a clear and thorough
understanding of the product to be developed. Requirements analysis includes both
fact-finding about how the problem is solved in the current practice as well as
forecasting how the planned system might work. It is a part of software
engineering task that essentially serves as a bridge between the system level
requirement engineering and software design. It is generally performed by a
software engineer. In case of a complex business application, a system analyst who
is trained in the business part of the application domain performs this task.

Requirements analysis starts with the statement of requirements given by the
customer. If the project is not for a particular customer but is generally initiated,
then a vision statement is created that briefly describes what the proposed system
is about and this is followed by a list of features or services that it is going to
provide or the tasks that it is going to support. In the initial stage, the system is
viewed as a black box, the services that it renders are found out and the unique
interaction scenarios are described for each service.

Requirements analysis is an important task because without understanding the
requirements of the client or the problem, software may be produced but that which
serves another purpose but not the purpose that is originally intended. Therefore,
neither the customer (client) is satisfied nor the business problem is solved or
simplified with the help of the software. This results in wastage of time, money and
effort, and also leads to frustration among the members of the development team,
leaving the customers unsatisfied. It is also difficult, expensive and time consuming
to make modifications to the wrongly produced final software product.

Requirements, analysis activities spell out the details of the software’s operational
characteristics (such as function, data and behavior), provide information on
software’s interface with other system elements and establish objectives that the
software must meet. It allows the software engineer (or software analyst) to refine
the software allocation and build data and functional models and behavioral
domains within which the software is going to function. It also provides the
software designer with a mass of information, functions, and behavior that can be
translated to data, architectural interface and component-level designs. In addition,
requirements specification helps the developer and the customer to access the
quality of the software once it is built.

 Requirements Analysis

33

2.1 Areas of Requirements Analysis
The effort expended in software requirements analysis may be divided into five
areas: (i) problem recognition, (ii) evaluation and synthesis, (iii) modeling,
(iv) specification, and (v) review. Initially, the analyst makes a study of the system
specification and software project plan. It is necessary to consider software in the
context of a system and to review the scope or area of influence of software in that
system. The next goal is to understand the basic problem elements as perceived by
the customers or users.

Evaluating the problem and synthesizing the solution is the next task in
requirements analysis. The analyst must define all externally observable data
objects, evaluate the flow and content of information, define and elaborate all
software functions, understand software behavior in the context of events that
affect the system, establish system interface characteristics and highlight
additional design constraints. An overall approach or solution would emerge to
solve the problem at hand for which the software is about to be developed. Finally
the developed requirements are revised for consistency and correctness to reflect
the requirements that are gathered.

As an example, consider an inventory control system that is required for a major
supplier of auto parts. The problems with the current manual system are:
(i) inability to obtain rapidly the status of component, (ii) a turn around period of
two to three days to update a card file, (iii) multiple reorders to the same vendor
because there is no way to associate vendors with components, and so forth. After
identifying the causes, the analyst determines as to what information is to be
produced by the new system and the type of input data to be provided to the
system. For instance, the customer places his requirements and a daily report is
generated which indicates the parts for which requisition has been placed from the
inventory and the number of parts that remain after the delivery.

The analyst comes up with one or more solutions after evaluating current problems
and desired information (input and output). Initially, the data objects, processing
functions, and behavior of the system are defined in detail. Once this information
has been gathered, basic architectures for implementation are considered. An
analyst may think that a client/server approach would be appropriate for
implementing the solution. However, it should be decided whether the software to
support this implementation would fall within the scope outlined in the software
plan, and if a database management system is required, will the user/customer’s
need be satisfied. The process of evaluation and synthesis continues until both the
analyst and the customer feel confident that the software can adequately be
specified for subsequent implementation of the inventory information system.

3. REQUIREMENTS DETERMINATION
Before starting the process of actually building an information system (for
instance, designing and developing a software system), one must be sure about the
type of information the proposed system should deliver, the way in which it is to
be delivered, and the receipients of that information; in short, what are the
requirements of the system? A requirement is a feature that must be included in a
new system. It may include a way of capturing or processing data, producing
information, controlling a business activity, or lending the desired support to the
management. The determination of requirements entails studying the existing
system and collecting details about it to find out what these requirements are.

Upon reviewing a number of information systems, one would find that the reasons
for failure upon the introduction of the system or the reason for exceeding the
development budgets are that the requirements from the proposed information
system had not been clarified properly. This means that certain requirements are
still too vague or even incorrect and are therefore misinterpreted by the system
designers and builders.

 System Analysis and Design

34

Since system analysts do not work as managers or employees in functional
departments (such as marketing, purchasing, manufacturing, or accounting), they
are unaware of the basic information as the managers and users working in those
areas have.

Therefore, an initial step that should be taken by the analysts is to investigate and
understand the situation. Certain types of requirements are basic, common and
fundamental in most of the situations. Developing answers to a specific group of
questions will help in understanding these basic requirements. There are also
special kinds of requirements that arise, depending on whether the system is
oriented for transaction purpose or decision making purpose and whether the
system covers several departments. For example, the need to inform the manager
dealing with inventory when an unusually large order is forthcoming underscores
the importance of linking the sales, purchasing and warehouse departments.

Requirements determination can be viewed as consisting of three major activities.
They are:

 Requirements Anticipation,

 Requirements Investigation, and

 Requirements Specification.

3.1 Requirements Anticipation
The study conducted by a system analyst is influenced by his/her previous
experience in a particular business area or an environment of a system. Based on
this experience, the system analyst predicts the likelihood of certain problems or
features and also requirements for a new system having similar characteristics.
As a result, the features that are investigated for the current system, questions
about the current system that are raised, or methods employed depend upon this
familiarity.

Anticipating requirements can be a mixed blessing. On the one hand, experience
from previous studies can lead to investigation of areas that would otherwise go
unnoticed by an inexperienced analyst. It is essential to hire a system analyst
having the background to know what to ask or which aspects to investigate in an
organization. On the other hand, if a bias is introduced or shortcuts are taken in
conducting the investigation, requirements anticipation becomes a problem.

3.2 Requirements Investigation
This activity is the most important in the systems analysis process. Using a variety
of tools and skills, analysts study the current system and document its features for
further analysis. Requirements investigation relies on the fact-finding techniques
and includes methods for documenting and describing system features.

3.3 Requirements Specifications
The data produced during the fact-finding investigation are analyzed to determine
requirements specifications and describe the features for a new system. This
activity has three interrelated parts:

 Analysis of Factual Data: The data collected during the fact-finding study
and included in data flow and decision analysis documents are examined to
determine the degree of performance of the system and whether it will meet
the needs of an organization.

 Identification of Essential Requirements: This includes features that must
be included in a new system, ranging from operational details to performance
criteria.

 Selection of Requirements Fulfillment Strategies: The methods that will
be used to achieve the stated requirements are selected. These form the basis
for systems design, which follows requirements specification.

 Requirements Analysis

35

All three activities are important and must be performed properly. The
responsibility of undertaking requirements specification lies with the system
analyst and it is he/she who is responsible for quality of the work.

4. FACT-FINDING TECHNIQUES
It is a strenuous task to gather requirements for a new system or to enhance the
features of an existing system. Some of the requirements that need to be gathered
relate to finding the key users of the system, the genuine business problem, the
separation of wants of the key users from their real needs, motivating the people
who understand the problem and discuss requirements with them and also
implementing the solution.

The specific methods analysts use for collecting data about requirements are called
fact-finding techniques. This is also known as information gathering or data
collection. Fact finding methods are used to interact with people in order to know
the scope of the project. One can define the scope through interviews or a group
meeting. Effective fact-finding techniques are crucial to the development of
systems projects. Fact-finding is performed during all phases of the systems
development life cycle. To support systems development, the analyst must collect
facts about Data, Processes, Interfaces and Geography. Some of the fact-finding
tools include:

 Interviews

 Questionnaires

 Written information analysis (on-site reviews), and

 Observation.

Usually these techniques are used in combination to ensure that an accurate and
comprehensive study is undertaken. An analyst usually applies several of these
techniques during a single system project.

Following are the areas where fact-finding is applied:

 Fact-finding is important in systems planning and systems analysis phases. It is
during these phases that the analyst learns about the problems, opportunities,
constraints, requirements and priorities of a business and system.

 During systems design, fact-finding becomes technical as the analyst
attempts to learn more about the technology selected for the new system.

 During the systems support phase, fact-finding brings to light whether
a system has decayed to a point where it needs to be redeveloped.

The fact-finding techniques are briefly described below:

4.1 Interview
Analysts use interviews to collect information from individuals or from groups.
The respondents are generally current users of the existing system or potential
users of the proposed system. In some instances, the respondents may be managers
or employees who provide data for the proposed system or who will be affected by
it. Although some analysts prefer interview to other fact-finding techniques, it is
not always the best source of application data.

The respondents and analysts interact during an interview. Interviews provide
analysts with opportunities for gathering information from respondents since they
have knowledge about the system. This method is the best source of qualitative
information such as opinion, policies, and subjective descriptions of activities and
problems. Other fact-finding methods are likely to be more useful for collecting
quantitative data (numbers, frequencies, and quantities).

 System Analysis and Design

36

This method of fact-finding can be especially helpful for gathering information
from individuals who do not have effective writing skills or who may not have the
time to respond to questionnaires. Interviews allow analysts to discover areas of
misunderstanding, unrealistic expectations, and even dislike the proposed system.
The information gathered through interviews is very important because it helps in
the analysis of the current system and the construction of data flow diagrams.

In general, there are three categories of individuals to be interviewed:

 Senior Executives: These interviews serve both to reinforce the project
team’s understanding of the business and to gain assurance of the top
managements commitment to the project.

 Middle Managers: These individuals are interviewed to gather information
related to the specifics of the problem.

 Other Company Personnel: While information is being gathered, it may
become clear that persons outside of top and middle management can
contribute critical information. These individuals may be identified during
interview or through company records.

It is to be noted that the number of people to be interviewed and the category of
people to be interviewed will depend upon the business problem under investigation.

Generally, interviews are often conducted in the interviewee's office or at some
location considered convenient by the interviewee. Such a setting should result in
greater openness during the interview. Let us consider the two types of interviews
that can be used:

a. Structured.

b. Unstructured.

4.1.1 STRUCTURED INTERVIEWS

Structured interviews use standardized questions in either an open-response or
closed-response format. The former allows respondents to answer in their own
words and the latter uses a set of prescribed answers.

Following are the advantages of structured interviews:

 Ensures uniform wording of questions for all respondents.

 Easy to administer and evaluate.

 More objective evaluation of both the respondents and answers to questions.

 Limited training of interviewer needed.

 Results in shorter time period for completion of interviews.

Following are the disadvantages of structured interviews:

 Cost of preparation is high.

 Respondents may not accept high level of structure and mechanical way of
putting questions.

 High level of structure may not be suitable for all situations.

 High level of structure reduces respondent spontaneity and the ability of the
interviewer to follow up on comments of the interviewee.

4.1.2 UNSTRUCTURED INTERVIEWS

Unstructured interviews, based on question-and-answer format, are appropriate
when analysts want to acquire general information about a system. This format
encourages respondents to share their feelings, ideas and beliefs.

 Requirements Analysis

37

Following are the advantages of unstructured interviews:

 Interviewer has greater flexibility in wording questions to suit the level of
understanding of the respondent (e.g., ‘State the time frame aspect of your
scheduling commitment’ or ‘Are you busy at work?’)

 Interviewer can give attention to those areas that arise spontaneously during
interview.

 May give information on areas that were overlooked or not thought to be
important.

Following are the disadvantages of unstructured interviews:

 May be inefficient with respect to the time at disposal of both the respondent
and the interviewer.

 Interviewers may introduce biase or distort the questions or reporting results.

 Extraneous information may get included.

 Analysis and interpretation of results may be lengthy.

 This method involves extra time to collect essential facts.

One interview technique that is often used consists of two-person interviewing
team. One member acts as the interview leader, and is responsible for asking
questions and directing the course of the discussion. The other member takes notes
and is responsible for recording pertinent facts elicited during the interview as well
as monitoring the momentum and progress of the interview.

There are two aspects or criteria for conducting a successful interview: One is
planning and the other is actual conduct of interview.

The planning process involves:

 Setting a schedule of interviews.

 Researching the interview.

 Allocating a fixed time period for the interview.

Conducting an interview involves the following:

 Arriving at the scheduled time.

 Not exceeding the specified time period.

 Conducting the interview in those areas in which the interviewee has
adequate knowledge.

 Not attempting to demonstrate personal knowledge.

4.2 Questionnaire
The questionnaire is a method of data collection which can be used by the analyst
in situations where it is impossible to interview all desired respondents because
either the physical distances or the number of desired respondents to be covered
are too large. The nature of the information required lends itself to this form of
collection. A questionnaire is defined as a series of questions for obtaining
information on a particular subject. This method does not allow analysts to observe
the expressions or reactions of respondents.

Questionnaires with sufficient space for answers can be sent to respondents by
mail or handed over in person. The interviewer meeting the respondent has the
advantage of allowing explanation of questions and an increase in the likelihood of
accurate responses. Various questionnaires are given periodically in order to
understand the operations of the organization and also to collect information and
opinions from the respondents.

There are two types of questionnaires:

i. Open-ended questionnaires.

ii. Closed questionnaires.

 System Analysis and Design

38

Analysts often use open-ended questionnaires to learn about feelings, opinions,
and general experiences or to explore a process or problem. It is necessary to
ensure that an open-ended question can be answered quickly, briefly, accurately
and in common terminology.

Closed questionnaires control the frame of reference by presenting respondents
with specific responses to choose from. This format is appropriate for eliciting
factual information.

Regardless of the type of questions used, the questionnaire should conform to the
general rules:

 It should not be too long. The longer the questionnaire, the less likely people
are to complete it.

 Confidentiality of responses (where necessary) should be ensured and
communicated to the respondents.

 The use and purpose of the questionnaire should be explained to the
respondents.

The way the potential respondents are selected is critical to the value of the results.
Clearly, when the sample population is small compared with the total, that sample
must be as representative as possible.

Following are the advantages of questionnaires:

 Questionnaires churn out high volume of responses.

 They are inexpensive.

 There is standardized wording in the preparation of questionnarires and most
of the time answers are given in a standardized form.

 When compared to the interview method of data collection, the respondents
of a questionnaire remain anonymous.

 It is a faster method of data collection.

Following are the disadvantages of questionnaires:

 Limitations on the types of questions (e.g., not suitable for probing
questions).

 There is a possibility of misinterpretation of facts and figures.

 The response to questionnaires is generally low.

4.3 Record Review
In order to know the details of the current operation of a business system, the
project team should attempt to gather facts from the available documents. In record
reviews, analysts examine information that has been recorded about the system
and users. Record inspection can be preformed at the beginning of the study, as an
introduction, or later in the study, as a basis for comparing actual operations with
the recorded version of the information.

Available pertinent documentation should be reviewed. This might include:

Business Documentation:

 Annual reports

 Business plans and forecasts

 Organization charts and manuals

 Company handbooks and manuals

 Literature on advertisements.

Current Systems Environment Documentation:

 Systems descriptions

 Data administration guidelines

 Requirements Analysis

39

 System architecture documentation

 System Flowcharts and database specifications

 Information systems organization charts

 User manuals.

Current Technical Environment Documentation:

 Hardware distribution lists

 Capacity planning documents

 System Software lists

 Data network documentation

 Performance statistics

 Hardware and software acquisition plans.

In short, all the available written material that describes the business and
information environments should be considered. They can help analysts
understand the system by familiarizing them with the type of operations that
must be supported and with formal relations within the organization. In addition,
the documents that provide important information should be catalogued for
future reference.

4.4 Observation
Interviews are useful in gaining such information from users that is normally not
shared with the analyst. Much knowledge is tacit, i.e. it is never verbalized because
the user assumes the analyst is already commonplace familiar with the facts.
Unfortunately, facts that the user thinks are already in the pocket of the analyst
may well be vital for the analyst’s understanding. One way to tackle the tacit
knowledge problem is to observe things. The analyst observes the users in their
workplace, without the users knowing his/her presence.

Observation is very helpful to understand how each employee works and interacts
with the current system. For instance, an analyst may observe that the employees
are doing paper work and other administrative tasks. It allows analysts to gain
information they cannot obtain by means of any other fact-finding method.

Observation entails watching the departmental staff carrying out their various
tasks. It is a time-consuming activity and therefore should be undertaken in a
scientific manner with a definite purpose.

5. JOINT APPLICATION DESIGN
To determine user requirements in present times, it is necessary to adopt more
effective techniques that recognize both the differences in communication styles of
employees in the company and the differences in application requirements of the
business functions that are undertaken. One such technique is Joint Application
Design (JAD).

Joint Application Design is a management process – a people process – which
allows Information Systems (IS) to work more effectively with users in a shorter
time frame. Since the late seventies, JAD has proven to be an effective technique
for building user commitment to the success of application systems through their
active participation in the analysis of requirements and the specification of the
system design. JAD sessions are conducted in a location away from where the
people involved normally work. They are usually held in special-purpose rooms
where participants sit around horseshoe-shaped tables.

This is to keep participants away from as many distractions as possible so that they
can concentrate on systems analysis.

 System Analysis and Design

40

The following is a list of typical JAD participants:

 JAD Session Leader – The JAD leader organizes and runs the JAD. He is a
trained individual who plans and leads JAD sessions. He sets the agenda and
works towards achievement of objectives of the agenda.

 Users – Users are vital participants in a JAD. Users are those individuals who
clearly understand purposeful use of the system on a daily basis.

 Managers – Managers of the work groups who use the system in question
provide insights into new organizational directions, motivations for and
organizational impacts of systems, and support for requirements determined
during the JAD.

 Sponsor – A JAD must be sponsored by someone at a relatively high level in
the company such as the vice president or the chief executive officer. If the
sponsor attends any sessions, it is usually only at the very beginning or the end.

 Systems Analysts – Members of the system analysis team attend the JAD
although their actual participation may be limited.

 Scribe – The person who makes detailed notes of the happenings at the JAD
session.

 IS Staff – Besides system analysts, other IS staff such as programmers,
database analysts, IS planners, and data center personnel, may attend the
session. Their purpose is to learn from the discussion and possibly to
contribute their ideas on the technical feasibility of proposed ideas or on the
technical limitations of current systems.

The end result of a completed JAD is a set of documents that detail the working of
the current system and the features of a replacement system. Depending on the
exact purpose of the JAD, analysts may gain detailed information on what is
desired of the replacement system.

6. STRUCTURED WALKTHROUGH
Before the phase of the SDLC can begin, the users, management, and development
group must review and approve the Baseline Project Plan (BPP). This review takes
place before the BPP is submitted or presented to some project approval body, such
as an IS steering committee or the person who must fund the project. The objective
of this review is to ensure that the proposed system conforms to organizational
standards and also make sure that all relevant parties understand and agree with the
information contained in the BPP. A common method for performing this review is
called walk through or structured walkthrough. Structured walkthrough has proved
effective in ensuring quality of an information system.

Although walkthroughs are not rigidly formal or exceedingly long in durations,
they have a specific agenda that highlights the areas that need to be covered and
the expected completion time. Individuals attending the meeting have specific
roles. Which are listed below:

 Coordinator: Coordinator plans the meeting and facilitates discussion.
He/she may be the project leader responsible for the current life cycle step.

 Presenter: Presenter describes the work product to the group. The presenter
is an analyst who has usually analysts who have done all or some of the work
being presented.

 User: User (or group) makes sure that the product meets the needs of the
project’s customers. Users do not belong to the project team.

 Secretary: Secretary takes notes and records decisions or recommendations
made by the group. He/she may be a clerk assigned to the project team or one
of the analysts working with the team.

 Requirements Analysis

41

 Standard-bearer: Standard-bearer ensures that the work product adheres to
organization’s technical standards. Many larger organizations have staff
within the unit responsible for establishing standard procedures, methods,
and documentation formats. For example, within Microsoft, user interface
standards are developed and rigorously enforced on all development projects.
As a result, all systems have the same look and feel to users. These standard
bearers validate the work so that it can be used by others in the organization.

 Maintenance Oracle: Maintenance oracle person reviews the work product
in terms of future maintenance activities. The goal is to make the system and
its documentation easy to maintain.

Walkthrough meetings are a common occurrence in most systems development
groups. In addition to reviewing the BPP, these meetings can be used for the
following activities:

 System specifications.

 Logical and physical designs.

 Code or program segments.

 Test procedures and results.

 Manuals and documentation.

One of the key advantages of using a structured review process is to ensure that
formal review points occur during the project. At each subsequent phase of the
project, a formal review should be conducted to make sure that all aspects of the
project are satisfactorily accomplished before assigning additional resources to the
project. This conservative approach of reviewing each major project activity
contingent upon successful completion of the prior phase is called incremental
commitment. It is much easier to stop or redirect a project at any point when using
this approach.

7. ANALYZING AND DOCUMENTING REQUIREMENTS
After requirements are gathered, they are analyzed and documented using an
iterative approach. As each requirement is analyzed, it generally leads to
further questions. This requires the analyst to probe further till all relevant
issues are cleared.

The business analyst must ensure that the requirements are documented in a
standard and consistent manner that is easily and clearly understood by all
members of the team involved in finding a solution. To do this, the analyst uses
text, diagrams or a combination of both.

To manage and communicate requirements more easily, they are categorized into:

 Business Requirements,

 Functional Requirements, and

 Technical Requirements.

A business analyst needs to have the following skills for carrying out analysis:

 Analytical skills.

 Understanding of system development methodologies.

 Modeling techniques.

 Prototyping techniques.

 Documentation.

 System Analysis and Design

42

8. TOOLS FOR DOCUMENTING PROCEDURES AND DECISIONS
Making decisions and following procedures are an integral part of conducting
business. For instance, deciding, when to reorder supplies, are less complex,
involve fewer people and are guided by step-by-step procedures. Both
procedures and decisions are important to systems analysts who are part of the
investigation process.

A tool is any device, object, or operation used to accomplish a specific task.
Systems analysts rely on tools just as other people do their everyday activities. For
example, a mechanic uses wrenches and screwdrivers when working on an
automobile, a carpenter uses hammers and saws to prepare furniture and so on. For
making furniture, it is not only necessary to know the availability of various
relevant tools but also their proper usage.

Tools help analysts to put together information gathered through the data
collection methods in a relevant context. But, like all tools, the ones analysts use to
document procedures and decisions must be used properly. The three tools used
for documenting procedures are:

 Decision Concepts,

 Decision Trees,

 Decision Tables, and

 Structured English.

8.1 Decision Concepts

When analyzing procedures and decisions, the analysts must start identifying
conditions, concepts and actions, common to all activities.

8.1.1 CONDITIONS AND DECISION VARIABLES

Conditions vary, which is why analysts may refer to them as decision variables.
For example, in business, the handling of an invoice is based on a condition that
constitutes a decision variable. In some organizations it is a norm that all invoices
be signed before payment can be authorized. The same invoice could also be
described by other alternate conditions: authorized or unauthorized, correctly
priced or incorrectly priced.

To create documentation, the investigator must identify both the relevant and the
permissible conditions that can occur in a situation. Only those conditions that are
relevant to the study should be included. The fact that the invoice is signed or
unsigned is a relevant variable.

8.1.2 ACTIONS

When all possible conditions are known, the analyst determines the next course of
action when certain conditions occur. Actions are alternatives – the steps,
activities, or procedures that an individual may decide to take when confronted
with a set of conditions. The actions can be quite simple in some cases and
extensive in others.

Actions can be related to quantitative conditions. For example, businesses often
give discounts on purchased merchandise, depending on the size of the order.
A company might give discounts based on the condition, SIZE OF ORDER: over
Rs.15,000, Rs.10,000 to Rs.15,000, and less than Rs.10,000. The three actions for
the given three conditions respectively are: 3% discount, 2% discount, and no
discount, that is, full payment of invoice amount.

 Requirements Analysis

43

8.2 Decision Trees
Analysts need to organize information collected about decision-making in a
standardized manner.

Decision tree is a method for describing and communicating decisions in an
unambigious manner. Decision Trees are excellent tools that help in choosing
between several courses of action. They provide a highly effective structure within
which options can be laid out and possible outcomes can be investigated for
choosing those options. They also help in forming a balanced picture of the risks
and rewards associated with each possible course of action.

A decision tree is a diagram that presents conditions and actions sequentially and
thus shows which conditions to consider first, which second and so on. It is also a
method of showing the relationship of each condition and its permissible actions.
The decision tree defines the conditions as a sequence of left to right tests.
A decision tree helps to show the paths that are possible in a design following an
action or decision by the user. Decision trees represent a series of IF … THEN
type rules which are linked together and can be used to predict properties for our
observations based upon the values of various features. Figure 1 below illustrates
the branches of a tree.

Figure 1: Format of a Decision Tree

8.2.1 DRAWING A DECISION TREE

Consider an example of constructing a decision tree as shown in figure 2. The
construction of a decision tree begins with a decision that one has to make i.e., we
start at the topmost point in the tree and ask the question “Type of the Customer?”.
This point, and all other points in which a question is based upon the data given is
called a node, with the first decision node referred to as the root of the tree. From
this, draw out lines towards the right for each possible solution, and write that
solution. The answer to the question determines the path we take through the tree.
This final destination which has no other paths leading away from it is called a
leaf, and each leaf has a classification attached to it. The example of a decision tree
is given below.

Figure 2: Example of a Decision Tree

After completion, the decision tree is reviewed. It is necessary to keenly observe
each and every line to see if there are any solutions or outcomes that have been
missed and those are again indicated in the decision tree. After completing the
decision tree, the range of possible outcomes will be highlighted.

8.3 Decision Tables
Decision tables and trees were developed long before the advent of computers.
They not only isolate many conditions and possible actions but also help ensure
that nothing has been overlooked. Decision tables are used to lay out in a tabular
form all possible situations which a business decision may encounter and to
specify the action to be taken in each of these situations.

 System Analysis and Design

44

A decision table is a matrix of rows and columns, rather than a tree that shows
conditions and actions. Decision rules, included in a decision table, state what
procedure to follow when certain conditions exist. This method has been used
since the mid-1950s, when it was developed at General Electric for the analysis of
business functions such as inventory control, sales analysis, credit analysis, and
transportation control and routing.

A decision table is a table composed of rows and columns, separated into four
separate quadrants as shown below:

Conditions Condition Alternatives

Actions Action Entries

The upper left quadrant contains the conditions that will affect the decision or
policy. The upper right quadrant contains the condition rules for alternatives. The
lower left quadrant contains the actions to be taken and the lower right quadrant
contains the action rules. Rules describe which actions are to be taken under a
specific combination of conditions. They are specified by first inserting different
combinations of condition attribute values and then putting X’s in the appropriate
columns of the action section of the table.

8.3.1 DEVELOPING DECISION TABLES
In order to build decision tables, it is necessary to determine the maximum size of
the table, eliminate any impossible situations, inconsistencies, or redundancies,
and simplify the table as much as possible. The following are the guidelines for
developing decision tables:

i. Determine the number of conditions that may affect the decision. Combine
rows that overlap, for example, conditions that are mutually exclusive. The
number of conditions becomes the number of rows in the top half of the
decision table.

ii. Determine the number of possible actions that can be taken. This becomes
the number of rows in the lower half of the decision table.

iii. Determine the number of condition alternatives for each condition. In the
simplest form of decision table, there would be two alternatives (Y or N) for
each condition. In an extended-entry table, there may be many alternatives
for each condition.

iv. Calculate the maximum number of columns in the decision table by
multiplying the number of alternatives for each condition. If there were four
conditions and two alternatives (Y or N) for each of the conditions, there
would be sixteen possibilities as follows:

Condition 1 : x 2 alternatives

Condition 2 : x 2 alternatives

Condition 3 : x 2 alternatives

Condition 4 : x 2 alternatives

 16 possibilities

The maximum number of possibilities are 2N, where, N is the number of conditions.

Fill in the condition alternatives. Start with the first condition and divide the
number of columns by the number of alternatives for that condition. In the
foregoing example, there are sixteen columns and two alternatives (Y and N), so
sixteen divided by two is eight. Then, choose one of the alternatives and write Y
in all of the eight columns. Finish by writing N in the remaining eight columns
as follows:

 Condition 1-YYYYYYYYNNNNNNNN

 Requirements Analysis

45

Repeat this for each condition using a subset of the table:

Y Y Y Y Y Y Y Y N N N N N N N N

Y Y Y Y N N N N

Y Y N N

Y N

Continue the pattern for each condition:

 Condition 1 Y Y Y Y Y Y Y Y N N N N N N N N

 Condition 2 Y Y Y Y N N N N Y Y Y Y N N N N

 Condition 3 Y Y N N Y Y N N Y Y N N Y Y N N

 Condition 4 Y N Y N Y N Y N Y N Y N Y N Y N

1. Complete the table by inserting an X where rules suggest certain actions.

2. Combine rules where it is apparent that an alternative does not make a
difference in the outcome; for example:

Condition 1 Y Y

Condition 2 Y N

Action 1 X X

 Can be expressed as:

Condition 1 Y

Condition 2 –

Action 1 X

The dash (–) signifies that condition 2 can be either Y or N and action will still
be taken.

1. Check the table for any impossible situations, contradictions, or redundancies.

2. Rearrange the conditions and actions (or even rules) to make the decision
table more understandable.

Example: A store wishes to program a decision on non-cash receipts for goods.

The conditions to check are as follows:

1. Transaction under Rs.50.

2. Pays by cheque (guarantee Rs.50).

3. Pays by credit card.

The possible actions that a cashier could take are as follows:

1. Ring up sale.

2. Check credit card from local database.

3. Call a supervisor.

4. Automatic check of credit card company database.

Using the above given rules, we construct a decision table showing all possible
combinations of alternatives.

 System Analysis and Design

46

The condition rules are Yes (Y) or No (N)

 Under £50 Y Y Y Y N N N N
Pays by cheque Y Y N N Y Y N N
Pays by credit card Y N Y N Y N Y N

Ring up sale
 Check from local database
 Call Supervisor
 Check credit card database

We can see that some of the combination of conditions given in the condition rules
are invalid; For instance, the customer cannot pay by cheque AND pay by credit
card or not pay by either method. We have decided that these conditions are
mutually exclusive. This decision table can be reduced to four condition rules.

 Under Rs.50 Y Y N N

Pays by cheque Y N Y N

Pays by credit card N Y N Y

Ring up sale

 Check from local database

 Call Supervisor

 Check credit card database

Indicate the actions.

Under £50 Y Y N N

Pays by cheque Y N Y N

Pays by credit card N Y N Y

Ring up sale X

Check from local database X

Call Supervisor X

Check credit card database X

After constructing a table, analysts verify it for correctness and completeness to
ensure that the table includes all the conditions along with the decision rules
that relate them to the actions. Analysts should examine the table for
redundancy and contradictions.

8.4 Structured English
Structured English is a modified form of the English language used to specify the
logic of information system processes. Although there is no single standard,
structured English typically relies on action verbs and noun phrases and contains
no adjectives or adverbs.

Structured English is used during the analysis stage of a project to identify
business processes. For example, “If hours greater than 40 pay fixed rate plus
actual – 40 times rate”. Closely related to structured English is pseudocode which
is closer to actually writing the program and is written in a form that can be easily
converted into programming statements. Pseudocode enables the programmer to
concentrate on the algorithm, without caring for the peculiarities of the
programming language.

 Requirements Analysis

47

While being characterized as formally-styled natural language, neither structured
English or Pseudocode are defined in terms of notation. There is an underlying
structure, the use of six specific structured programming constructs: SEQUENCE,
WHILE, IF-THEN-ELSE, REPEAT-UNTIL, FOR, and CASE.

Structured English is an additional method to overcome problems of ambiguous
language in stating conditions and actions in decisions and procedures. This
method uses narrative statements to describe a procedure. It does not show
decision rules, it states them. No special symbols or formats are used. Entire
procedures can be stated quickly, since only English-like statements are used.

8.4.1 BENEFITS OF STRUCTURED ENGLISH

Structured English is a useful way of specifying procedural rules with a natural
order. In situations where the rules are non-procedural, without a natural order,
a decision table is more suitable.

Structured English can be useful to describe conditions and actions. When
examining a business setting, analysts can use structured English to state decision
rules as they are being applied. If analysts cannot state what action to take when a
decision is made, it means they need to acquire more information to describe it. On
the other hand, after activities have been described in this structured fashion,
analysts can take help from other persons to review the narrative and quickly
determine whether mistakes or omissions have been made in stating the decision
processes.

8.4.2 DEVELOPING STRUCTURED STATEMENTS

The purpose of Structured English is to describe a process in unambiguous terms
that can be easily read and understood by a non-technical business user.

Some good style points for Structured English are:

 Use uppercase for keywords and lower case for everything else. This ensures
that the logical structure of the process is easily visible.

 Use indentation to reinforce the logical structure of the process.

 Keep the description high-level.

Structured English uses three basic types of statements to describe a process:

i. Sequence Structures.

ii. Decision Structures.

iii. Iteration Structures.

i. Sequence Structures: A sequence structure is a single step or action
included in a process i.e., a block of steps that should be executed in
sequence. It does not depend on the existence of NOT condition, and, when
encountered, it is always taken. Several sequence instructions are used
together to describe process. The general form is as follows:

 BEGIN

 Process step 1

 Process step 2

 ...

 Process step n

 END

 For example, in a payroll system, the sequence structure would be as follows:

 Accept employee-ID.

 Accept employee-type.

 Pay base salary.

 System Analysis and Design

48

ii. Decision Structures: The action sequences are included within decision
structures that identify conditions. Decision structures thus occur when two
or more actions can be taken, depending on the value for a specific
condition i.e., choosing between alternative courses of action based on
multiple conditions. One must assess the condition and then take the
decision to take the stated actions or set of actions for that condition. Once
the determination of the condition is made, the actions are unconditional.
The decision structure, through the use of IF/THEN/OTHERWISE phrases,
points out alternatives in the decision process quite clearly. The general
form will be as follows:

 IF condition 1 THEN

 Block of steps 1

 (ELSE IF condition n THEN

 Block of steps n)

 [ELSE

 Block of steps otherwise]

 END IF

 The conditions are examined in turn and the block of statements are executed
following the first true condition. There can be zero or more “ELSE IF” parts
which are evaluated in the order in which they appear. The “ELSE” part can
only occur a maximum of once – it provides an alternative if none of the
conditions in the “IF” or “ELSE IF” part are true. Decision structures are not
limited to two condition-action combinations. There can be many conditions.

 An example in Decision Structure is expressed as follows:

 BEGIN

 BEGIN IF

 IF Employee-Type is Salary

 THEN PAY base salary

 END IF

 BEGIN IF

 IF Employee-Type is Hourly

 AND Hours-Worked is <40

 THEN CALCULATE hourly wage AND PRODUCE
 Absence Report

 END IF

 BEGIN IF

 IF Employee-Type is Hourly

 AND Hours-Worked is 40

 THEN CALCULATE hourly wage

 END IF

 BEGIN IF

 IF Employee-Type is Hourly

 AND Hours-Worked is >40

 THEN CALCULATE hourly wage AND CALCULATE
overtime

 END IF

 END

 Requirements Analysis

49

iii. Iteration Structures: Certain activities are repeated while a certain
condition exists or until a condition occurs. Iteration instructions permit
analysts to describe these cases. The general form is as follows:

 SELECT expression

 CASE range of values 1

 Block of steps 1

 (CASE range of values n

 Block of steps n)

 [ELSE

 Block of steps otherwise]

 END SELECT

The expression following the “SELECT” keyword should evaluate to a single
value. This value is then matched to each of the range of values associated with
each “CASE” keyword in the order in which they appear. The block of steps
following the first matching case is executed. If no matching “CASE” is found
then the block of steps following the “ELSE” is executed (if any are present).

Repetition of a block of steps conditionally:

LOOP [UNTIL condition]

 Step 1

 Step 2

 ...

 [EXIT WHEN condition]

 ...

 Step n

 END LOOP [UNTIL condition]

 OR

 FOR EACH expression

 Step 1

 Step 2

 ...

 Step n

 END FOR

The same above example in iteration structures will be follows:

DO until all employees are processed

 BEGIN IF

 IF Employee-Type is Salary

 THEN PAY base salary

 END IF

 BEGIN IF

 IF Employee-Type is Hourly

 AND Hours-Worked is <40

 THEN CALCULATE hourly wage AND PRODUCE Absence
Report

 END IF

 BEGIN IF

 System Analysis and Design

50

 IF Employee-Type is Hourly

 AND Hours-Worked is 40

 THEN CALCULATE hourly wage

 END IF

 BEGIN IF

 IF Employee-Type is Hourly

 AND Hours-Worked is >40

 THEN CALCULATE hourly wage AND CALCULATE overtime

 END IF

END DO

9. STRUCTURED ANALYSIS
Structured Analysis is a widely used system modeling technique for understanding
real world systems before they are built. It is based on functional decomposition of
the problem domain. However, its inherent weakness is in identification and
partitioning of a system’s functionality.

Structured analysis is a set of techniques and graphical tools that allow the analyst
to develop new kind of system specifications that are easily understandable to the
user. Most of them have no tools. The traditional approach focuses on cost/benefit
and feasibility analysis, project management, hardware and software selection and
personnel considerations. In contrast, structured analysis considers new goals and
structured tools for analysis. The new goals specify the following:

a. Graphics should be used wherever possible to help communicate better with
the user.

b. Logical and physical systems should be differentiated.

c. A logical system model to familiarize the user with system characteristics
and interrelationships before implementation should be built.

The structured tools focus on the data flow diagram, data dictionary, structured
English, decision trees and decision tables. The objective is to build a new
document called system specification document. This document provides the basis
for design and implementation.

In structured analysis there are three views:

 The functional view, made up of data flow diagrams, is the primary view of
the system. It defines what is done, the flow of data between things that are
done and provides the primary structure of the solution. Changes in
functionality result in changes in the software structure.

 The data view, made up of entity relationship diagrams, is a record of what is
in the system, or what is outside the system that is being monitored. It is the
static structural view.

 The dynamic view, made up of state transition diagrams, defines when things
happen and the conditions under which they happen.

Structured analysis has the following attributes:

i. It is graphic. The DFD for example, presents a picture of what is being
specified and is conceptually easy to understand the presentation of the
application.

ii. The process is partitioned so that one has clear picture of the progression
from general to specific in the system flow.

iii. It is logical rather than physical. The elements of system do not depend on
vendor or hardware. They specify in a precise, concise and highly readable
manner the workings of the system and its implementation.

 Requirements Analysis

51

iv. It is based on the rigoros study of the user area, a commitment that is often
taken lightly in the traditional approach to systems analysis.

v. Certain tasks that are normally carried out late in the system development life
cycle are moved to the analysis phase. For example, user procedures are
documented during analysis rather than later in implementation.

10. DATA FLOW DIAGRAM
Data Flow Diagram (DFD) is “a structured, diagrammatic technique for showing
the functions performed by a system and the data flowing into, out of, and within
it”. It was first developed by Larry Constantine as a way of expressing system
requirements in a graphical form which led to modular design.

DFDs show the flow of data from external entities into the system, the movement
of data from one process to another, as well as its logical storage. It consists of
data flows, processes, sources, destinations, and stores – all described through the
use of easily understood symbols. An entire system can be described from the
viewpoint of the data it processes with only four symbols. At the same time, data
flow diagrams are powerful enough to show parallel activities. Essentially, DFDs
describe the information flows within a system. Data flow diagrams are of atwo
types. They are:

 Physical Data flow diagrams.

 Logical Data flow diagrams.

Physical data flow diagrams are implementation-dependent. They show the actual
devices, department, people, etc., involved in the current system. They can be
verified by the users. A physical DFD is a good starting point in developing a
logical DFD.

Logical data flow diagrams, in contrast, describe the system independently of how
it is actually implemented; that is, they show what takes place, rather than how an
activity is accomplished.

Both types of data flow diagrams support a top-down approach to systems
analysis, whereby analysts begin by developing a general understanding of the
system and gradually explode components in greater detail. Additional details that
are added inclued information about control although upper-level general diagrams
are drawn without showing specific control issues to ensure focus is on data and
processes.

DFDs show the following:

 The processes within the system.

 The data stores (files) supporting the system’s operation.

 The information flows within the system.

 The system boundary.

 Interactions with external entities.

10.1 DFD Principles
Following are the principles of DFDs:

 The general principle in Data Flow Diagramming is that a system can be
decomposed into subsystems and subsystems can be decomposed into lower
level subsystems and so on.

 Each subsystem represents a process or activity in which data is processed.
At the lowest level, processes can no longer be decomposed.

 Each ‘process’ i.e., a subsystem and an activity in a DFD has the
characteristics of a system. All processes must have at least one data flow in
and one data flow out. All processes should modify the incoming data,
producing new forms of outgoing data. A data flow must be attached to at
least one process.

 System Analysis and Design

52

 Just as an operational system must have input and output, a process must also
have input and output.

 Data enters the system from the environment; data flows between processes
within the system and is produced as output from the system. Each data store
must be involved with at least one data flow. Each external entity must be
involved with at least one data flow.

10.2 Data Flow Diagram Notations
There are four symbols used in data flow diagrams:

 Squares representing external entities, which are sources or destinations
of data: External Entities, also known as External sources/recipients, are
things (For example, people, machines, organizations etc.) which contribute
data or information to the system or which receive data/information from it.
External entities are represented by rectangles and are out side the system,
such as vendors or customers with whom the system interacts. When
modeling complex systems, each external entity in a DFD will be given a
unique identifier. It is common practice to have duplicates of external entities
in order to avoid crossing lines, or just to make a diagram more readable.

 Rounded rectangles representing processes, which take data as input, do
something to it, and output it: A Process represents activities in which data
is manipulated by being stored or retrieved or transferred in some way. In
other words we can say that process transforms the input data into output
data. Circles stand for a process that converts data into information.
Processes can be represented either by circles or by rounded rectangles.

 Arrows representing the data flows, which can either be electronic data or

physical items: Data Flows are represented by a line with an arrow,

 The arrow shows the direction of flow of data. It depicts data/information
flowing to or from a process. The arrows must either start and/or end at a
process box. It is impossible for data to flow from data store to data store
except via a process, and external entities are not allowed to access data
stores directly. Arrows must be named. Double ended arrows may be used
with care.

 Open-ended rectangles representing data stores: These also include
electronic stores such as databases or XML files and physical stores such as
filing cabinets or stacks of paper. Data stores are repositories of data in the
system. A data stored is depicted by two parallel lines or open-ended
rectangles. Here, data are to be stored or referenced by a process in the
system. The data store may represent computerized or non-computerized
devices.

10.3 Data Flow Diagram Layers

DFDs can be drawn in several nested layers. A single process node on a high level
diagram can be expanded to show a more detailed data flow diagram. The context
diagram is drawn first, followed by various layers of data flow diagrams. The
nesting of DFDs is shown in figure 3.

 Requirements Analysis

53

Figure 3: The Nesting of Data Flow Diagrams

10.4 Context Diagrams
A context diagram is a top level (also known as Level 0) data flow diagram. It only
contains one process node (process 0) that generalizes the function of the entire
system in relationship to external entities. The context diagram is shown in
figure 4.

Figure 4: Context Diagram

10.5 DFD levels
The first level DFD shows the main processes within the system. Each of these
processes can be broken into further processes until you reach pseudocode. The
first level DFD is shown in figure 5.

Figure 5: Levels of DFD

For example, students use an enrolment form to enroll in the program (say MCA)
at the ICFAI University. When the form is received, an acceptance-of-enrolment is
sent to the students. Later in the term, faculties receive class lists of enrolled
students for each subject (say Operating System) that they teach. At the end of the
term, the faculties return these lists, having marked each student’s exam result on
it. When all the listed are returned, students results for all their subjects are
posted. This process is depicted in figure 6.

 System Analysis and Design

54

Figure 6
(a) Context Diagram

(b) Level 1 Diagram

Consider another example. A customer presents a cheque to a clerk. The clerk
checks a ledger containing all account numbers and makes sure that the given
account number in the cheque is valid, that adequate balance is there in the account
to pay the cheque, and that the signature is authentic. Having done these, the clerk
gives the customer a token. The clerk also debits the customer’s account by the
amount specified on the cheque. If cash cannot be paid due to an error in the
cheque, the cheque is returned. The token number is written on the top of the
cheque and it is passed on to the cashier. The cashier calls out the token number
and the customer goes to the cash counter with the token. The cashier checks the
token number, takes the customer’s signature, pays cash, enters cash paid in a
ledger called day book, and files the cheque.

The physical DFD for the process of getting a cheque enchased in a bank is shown
in figure 7.

Figure 7: Physical DFD for Encashing Cheque

The same diagram may be converted to a logical DFD as shown in figure 8.
In this conversion, one takes the functions performed at each step as same. Each
process has well-defined operation. In this diagram one does not include details
such as clerks/cashiers performing operations.

 Requirements Analysis

55

Figure 8: Logical DFD for Encashing Cheque

DFDs are used for representing logical processing of data. It is useful to evolve a
logical DFD after first developing a physical DFD which shows the persons
performing various operations and how data flows between persons performing
operations.

11. DATA DICTIONARY

A data dictionary is a catalog or a structured repository that describes the different
elements in a system. In other words, it is a structured repository of data about
data. It is a rigorous definitions of all DFD data elements and data structures. In a
data dictionary a list of all the elements comprising the data flowing through a
system is found. The major elements are data flows, data stores, and processes.
The data dictionary stores details and descriptions of these elements.

There are three classes of items as given below:

 Data Element.

 Data Structure.

 Data Flows and Data Store.

The three levels that make up the hierarchy of data are shown in figure 9.

Figure 9: Data Hierarchy

11.1 Describing Data Elements
Data Element is the smallest unit of data that provides for no further
decomposition. For example, “date” consists of day, month, and year. The
description of a data element should include the name, description, and an alias
(synonym).

 System Analysis and Design

56

For example,

AUTHOR-NAME – first WHISKY – name
 – Middle – distiller
 – Last – vintage
 – Alias

The description should be a summary of the data element. A data element should
have the following:

1. A Different Name: For example, a PURCHASE ORDER may exist as PUR.
ORDER, PURCHASE ORD, or P. O. All these may be recorded in the data
dictionary and included under the PURCHASE ORDER definition and
separately with entries of their own. One example is “P.O. alias of
PURCHASE ORDER.”

2. Usage characteristics, such as range of values or the frequency of use or both.
A value is a code that represents a meaning. There are two types of data
elements:

 a. Those that take a value within a range: For example, a payroll that
checks amount between $1 and $10,000 is called a continuous value.

 b. Those that have a specific value: For example, departments in a firm
may be coded 100 (accounting), 110 (personnel, etc.).

100 means “Accounting Department”, 101 means “Accounts Receivable Section”,
102 means “Accounts Payable Section”.

In either type, values are codes that represent a meaning:

1. Control information such as the source, date of origin, users, or access
authorization.

2. Physical location in terms of a record, file or database.

11.2 Describing Data Structures
It is a group of data elements handled as a unit. For example, “phone” is a data
structure consisting of four data elements, i.e., area code – exchange – number –
extension- for example, 919 – 845 – 1254 – 267. “BOOK DETAILS” is a data
structure consisting of the data elements: author name, title, ISBN (International
Standard Book Number), LOCN (Library of Congress Number), publisher’s name,
and quantity. Any data structure is described by specifying the name of each data
structure and the elements it represents, provided they are defined elsewhere in the
data dictionary. Some elements are mandatory whereas others are optional. The
example given below depicts the data structure and data elements.

 Mandatory Optional

Data structure Book-Details

Data elements Author-Name X

 Title of Book X

 Edition X

 ISBN
(International Standard Book Number)

 X

 LOCN (Library of Congress Number) X

 Publisher-Name X

 Quality Ordered X

 Requirements Analysis

57

11.3 Describing Data Flows and Data Stores
The contents of a data flow may be described by the names of the data structures
that pass along it. Using the above BOOK-ORDER example, data flows may be
described as given below:

Data Flow Comments

Book-Details From Newcomb Hall Bookstore (source)

Author-Name

Title of Book

Edition Recent edition required

Quantity Minimum 40 copies

Data Store is a location where data structures are temporarily located. The above
example BOOK STORE-ORDER may be described as follows:

Data Flow Comments

Order

Order-Number Data flow/data structure feeding data store

Customer-Details Content of data store

Book-Detail Data flow/data structure extracted from data store

In constructing a data dictionary, the analyst should consider the following points:

1. Each unique data flow in the DFD must have one data dictionary entry. There
is also a data dictionary entry for each data store and process.

2. Definition must be readily by name.

3. There should be no redundancy definitions in the data definition.

4. The procedure for writing definitions should be straight forward but specific.

Data dictionaries are an integral component of structured analysis. If analysts want
to know how many characters are in a data item, by what other names it is
referenced in the system, or where it is used in the system, they should be able to
find the answers in a properly developed data dictionary.

The dictionary is developed during data flow analysis and assists the analysts
involved in determining system requirements.

Analysts use data dictionaries for five important reasons. They are as follows:

 To manage the detail in large systems.

 To communicate a common meaning for all system elements.

 To document the features of the system.

 To facilitate analysis of the details in order to evaluate characteristics and
determine where system changes should be made.

 To locate errors and omissions in the system.

Manage Detail
Large systems have huge volumes of data flowing through them in the form of
documents, reports and even conversations. Similarly, many different activities
take place that use existing data or create new details. All systems are ongoing all
the time. Those who try invariably make mistakes or forget important elements.
The best analysts don’t even try – they record the information. Some write the

 System Analysis and Design

58

descriptions on paper and others use index cards. Many enter the details into a
word processor running on a personal computer. The best-organized and most
effective analysts use automated data dictionaries designed specifically for system
analysis and design.

Communicate Meaning
Data dictionaries assist in ensuring common meaning for system elements and
activities. Data dictionaries record additional details about the data flow in a
system so that all persons involved can quickly look up the description of data
flows, data stores or processes.

Document System Features
Documenting the features of an information system is the third reason for using
data dictionary systems. Features include the parts or components and the
characteristics that distinguish each. Once the features have been articulated and
recorded, all participants in the project will have a common source for information
about the system.

Facilitate Analysis
The fourth reason for using data dictionaries is to determine whether new features
are needed in a system or whether changes of any type are required. For example,
one is working with a university that is considering allowing its students to register
for courses by dialing into an online registration system over touch-tone
telephones. What questions would one ask and what information would one want
to have available for examination? For any situation, systems analysts will
typically focus on the following system characteristics:

Nature of Transactions
The business activities that will be carried on while using the system, including the
data needed to accept, authenticate, and process each activity are said to be the
nature of a transaction.
Example: Will the system permit the processing of course registration transactions
where payment is by credit card? What additional features are needed to permit
registration by touch-tone telephone. How will payments be received if students do
not choose to pay by credit card?

Inquiries
Requests for retrieval of information or processing to generate a specific response
are called inquiries.
Example: Student and course descriptive data are in two separate files and are
currently not linked together. How can one make the data jointly available for
advisors who wish to assist students in program planning and course scheduling?

Output and Report Generation
It is the result of system processing (out put) presented to users in an acceptable
form (report generation).
Example: How can one identify those students who will register for courses over
touch-tone telephones so that they can be listed on a separate report? How does
one provide these same students with a signed registration record as one now does
for those registering on-site?

Files and Databases
Details of transactions and master records of concern to the organization are called
files and databases.
Example: What data must be captured to verify the accuracy and authenticity of
transactions arriving over telephones?

System Capacity
The ability of the system to accept, process and store transactions and data are
termed as system capacity.
Example: How many students can register simultaneously over touch-tone
telephones? What are the current and anticipated numbers of students that can be
registered in one hour?

 Requirements Analysis

59

Locate Errors and Omissions
A dictionary which stores lot of information about a student requstration system
such as transactions, inquiries, type of data and capacity would help us to know a
lot about the purpose of the system and help in evaluating the system. The
information itself should be complete and accurate. Therefore, dictionaries are
used for a fifth reason: to evaluate and locate errors in the system description.

12. ENTITY-RELATIONSHIP DIAGRAMS
Entity-Relationship (E-R) model is a conceptual data model that views the real
world as entities and relationships. The E-R diagram is a model of entities in
the business environment, the relationships among the entities, and the
attributes or properties of both the entities and their relationships. A basic
component of the model is the Entity-Relationship diagram which is used to
visually represent data objects.
The overall logical structure of a database can be expressed graphically by an E-R
diagram:
Rectangles: Represent entity sets.
Ellipses: Represent attributes.
Diamonds: Represent relationship sets among entity sets.
Lines: Link attributes to entity sets and entity sets to relationship sets.
Double ellipse: Represent multivalued attributes.
Dashed lines: Represent derived attributes.

Double lines: Indicate total participation of an entity in a relationship.

Double rectangle: Represent weak entity sets.

The basic symbols used in E-R diagrams are shown below.

Figure 10: Basic Symbols of E-R Diagrams

The following Relationship symbols are used in E-R diagrams:

The following symbols show the relationship cardinality in E-R diagrams:

An entity is anything that can be distinguished from any other thing. An entity is
an abstract or concrete thing in the real world that we want to model in a database.
It is described using a set of attributes. Every attribute is connected to one and only
one entity.

To identify an entity the best approach is defining a noun from the list of
attributes.

For example, in Customer Name, Customer is the entity and in payment mode,
payment is entity etc.

 System Analysis and Design

60

Entity type is a collection of entities that share common properties or
characteristics. An entity instance is a single occurrence of an entity type. An
entity type is described just once in a data model, whereas many instances of that
entity type may be represented by data stored in the database.

Attribute is a named property of an entity that is of interest to the organization.

For example, when Student is an entity, student-id, student-name, and student-
address will be the attributes of the Student entity.

Single valued attributes can take only one value for a given entity instance. For
example, Loan-number attribute for a specific loan entity refers only one number.
Multivalued attributes may take more than one value for a given entity instance.
For example, Phone-number attribute for a specific employee entity set may have
more than one numbers. Derived attributes are those whose values can be
calculated from related attribute values. If employee entity set has a date of birth of
employee, then we calculate the age by subtracting the value of date of birth from
today’s date.

A Relationship represents an association between two or more entities. In a
relational database, all entities have bonds between them, expressed as
relationships. A relationship is a link between two entities, and it tells us
something about which relationships exist between the entities. The degree of a
relationship is the number of entities associated with the relationship. The three
most common relationships in E-R diagrams are:

1. Unary Relationship.

2. Binary Relationship.

3. Ternary Relationship.

Unary Relationship is also called as recursive relationship. It is a relationship
between the instances of one entity type. Figure 11 shows the example of unary
relationship in E-R Diagrams:

Figure 11: Unary Relationship in E-R Diagrams

Binary relationship is a relationship between instances of two entity types.
Figure 12 shows the binary relationship in E-R Diagrams:

Figure 12: Binary Relationship in E-R Diagrams

 Requirements Analysis

61

Ternary relationship is a simultaneous relationship among instances of three
entity types. Figure 13 shows the ternary relationship in E-R Diagrams.

Figure 13: Ternary Relationship in E-R Diagrams

Figure 14 shows an E-R diagram for orders placed with vendors for supply of
items.

Figure 14: An Example of E-R Diagram

13. SOFTWARE REQUIREMENTS SPECIFICATION
Once the analysis is complete, the requirements must be written or specified. The
final output is the Software Requirements Specification (SRS) document. For
smaller problems or problems that can easily be comprehended, the specification
activity might come after the entire analysis is complete. However, it is more
likely that problem analysis and specification are done concurrently. An analyst
typically will analyze some parts of the problem and then write the requirements
for that part.

The quality assurance goal of SRS makes it necessary to generate the requirements
document that provides the technical specifications for the design and
development of the software. This document enhances the system’s quality by
formalizing communication between the system developer and the user and
provides proper information for accurate documentation.

The software design document defines the overall architecture of the software that
provides the functions and features described in the software requirements
document. It addresses the question, how it will be done? The document describes the
logical subsystems and their respective physical modules. It ensures that all
conditions are covered.

The quality assurance goal of the testing phase is to ensure completeness and
accuracy of the system and minimize the retesting process. In the implementation
phase, the goal is to provide a logical order for the creation of the modules and, in
turn, the creation of the system.

 System Analysis and Design

62

Maintenance and support is necessary to ensure that the system continues to
comply with the original specifications. The quality assurance goal is to develop a
procedure for correcting errors and enhancing software. This procedure improves
quality assurance by encouraging complete reporting and logging of problems,
ensuring that reported problems are promptly forwarded to the appropriate group
for resolution, and reducing redundant effort by making known problem reports
available to any department that handles complaints.

13.1 Characteristics of an SRS
To properly satisfy the basic goals, an SRS should have certain properties and
should contain different types of requirements. In this section, we discuss some of
the desirable characteristics of an SRS. We will also discuss the different
components of an SRS. A good SRS should have the following attributes:

 Understandability

 Unambiguousness

 Completeness

 Verifiability

 Consistency

 Modifiability

 Traceablity.

An SRS should be understandable, as one of the goals of the requirements phase
is to produce a document upon which the client, the users and the developers can
agree. Since multiple parties need to understand and approve the SRS, it is of
utmost importance that the SRS should be understandable.

An SRS is unambiguous if and only if every requirement stated has one and only
one interpretation. Requirements are often written in natural language, which are
inherently ambiguous. If the requirements are specified in a natural language, the
SRS writer has to be most careful to ensure that there are no ambiguities. One way
to avoid ambiguities is to use some formal requirements specification language.
The major disadvantage of using formal languages is the large effort required to
write an SRS and the high cost of doing so.

An SRS is complete if everything the software is supposed to do is in the SRS.
A complete SRS defines the responses of the software to all classes of input data.
For specifying all the requirements, the requirements relating to functionality
performance, design constraints, attributes and external interfaces must be
specified. In addition, the responses to both valid and invalid input values must
also be specified.

A requirement is verifiable if there exists some cost-effective process that can
check if the final software meets that requirement. An SRS is verifiable if and only
if every stated requirement is verifiable. This implies that the requirements should
have as little subjectivity as possible because subjective requirements are difficult
to verify. Unambiguity is essential for verifiability.

An SRS is consistent if there is no requirement that conflicts with another.
Terminology can cause inconsistencies; for example, different requirements may
use different terms to refer to the same object. There may be logical or temporal
conflict between requirements causing inconsistencies. This occurs if the SRS
contains two or more requirements whose logical or temporal characteristics
cannot be satisfied together by any software system. For example, suppose a
requirement states that an event ‘e’ is to occur before another event ‘f’. But then
another set of requirements state (directly or indirectly by transitivity) that event
‘s’ should occur before event e. inconsistencies in an SRS can be a reflection of
some other major problems.

 Requirements Analysis

63

Writing an SRS is an iterative process. Even when the requirements of a system
are specified, they are later modified as the needs of the client change with time.
Hence, an SRS should be easy to modify. An SRS is modifiable if its structure and
style is such that any necessary change can be made easily, while preserving the
completeness and consistency. Presence of redundancy is a major hindrance to
modifiability, as it can easily lead to errors. For instance, assume that a
requirement is stated in two places, and that at a later time the requirement needs
to be changed. If only one occurrence of the requirement is modified, the resulting
SRS will be inconsistent.

An SRS is traceable if the origin of each of its requirements is clear and if it
facilitates the referencing of each requirement in future development. Forward
traceability means that each requirement should be traceable to some design and
code elements. Backward traceability requires that it should be possible to trace
design and code elements to the requirements they support. Traceability aids
verification and validation.

Of all these characteristics, completeness is perhaps the most important. The most
common problem in requirements specification is when some of the requirements
of the client are not specified. This necessitates additions and modifications to the
requirements later in the development cycle, which are often expensive to
incorporate. Incompleteness is also a major source of disagreement between the
client and the supplier. The importance of having complete requirements cannot be
over-emphasized.

13.2 Components of an SRS
Completeness of specifications is difficult to achieve and even more difficult to
verify. Having guidelines about what different thins an SRS should specify will
help in completely specifying the requirements. Here, we will discuss some of the
system properties that an SRS should specify. The basic issues which an SRS must
address are:

1. Functionality.

2. Performance.

3. Deign constraints imposed on an implementation.

4. External interfaces.

Functional Requirements
Functional requirements specify which outputs should be produced for the given
inputs. They describe the relationship between the input and output of the system.
For each functional requirement, a detailed description of all the data inputs and
their source, the units of measure, and the range of valid inputs must be specified.

All the operations to be performed on the input data to obtain the output should be
specified. This includes specifying the validity checks on the input and output
data, parameters affected by the operation, and equations or other logical
operations which must be used to transform the inputs in to corresponding outputs.
For example, if there is a formula for computing the output, it should be specified.
Care must be taken not to specify any algorithms that are not part of the system,
but which may be needed to implement the system. These decisions should be left
for the designer.

An important part of the specification is the system behavior in abnormal
situations, like invalid input (which can occur in many ways) or error during
computation. The functional requirement must clearly state what the system should
do if such situations occur. Specifically it should specify the action that needs to be
taken in those situations where the input is valid but it is not possible to carry out
normal operations. An example of this situation is an airline reservation system,
where a reservation cannot be made even for valid passengers, if the airplane is

 System Analysis and Design

64

fully booked. In short, the system behavior for all foreseen inputs and for all
foreseen system states should be specified. These special conditions are often
likely to be overlooked, resulting in a system that is not robust.

Performance Requirements

This part of an SRS specifies the performance constraints on the software system.
All the requirements relating to the performance characteristics of the system must
be clearly specified. There are two types of performance requirements:

1. Static Requirements.

2. Dynamic Requirements.

Static requirements are those that do not impose constraints on the execution
characteristics of the system. These include requirements such as the number of
terminals to be supported, the number of simultaneous users to be supported, the
number of files and their sizes that the system has to process. These are also called
capacity requirements of the system.

Dynamic requirements specify constraints on the execution behavior of the
system. These typically include response time and throughput constraints on the
system. Response time is the expected time for the completion of an operation
under specified circumstances. Throughput is the expected number of operations
that can be performed in a unit time. For example, the SRS may specify the
number of transactions that must be processed per unit time, or what the response
time for a particular command should be. Acceptable ranges of the different
performance parameters should be specified as well as acceptable performance for
both normal and peak workload conditions.

All of these requirements should be stated in measurable terms. So, requirements
like “response time should be good”, or the system must be able to “process all the
transactions quickly”, are not desirable as they are imprecise and are not
appropriately quantifiable. Instead, statements like “in 90% of all cases, the
response time of command should be less than one second”, or “in 98% of all
cases, a transaction should be processed in less than one second” should be used to
declare performance specification.

Design Constraints
There are a number of factors present in the client’s environment that may restrict
the choices of a designer. Such factors include: standards that must be followed,
resource limits, operating environment, reliability and security requirements, and
policies that may have an impact on the design of the system. An SRS should
identify and specify all such constraints:

Standard Compliance: This specifies the requirements for the standards that the
system must follow. The standards may include the report format and accounting
procedures. There may be audit tracing requirements, which require certain kinds
of changes or operations that must be recorded in an audit file.

Hardware Limitations: The software may have to operate on some existing or
pre-determined hardware, thus imposing restrictions on the design. Hardware
limitations can include the type of machines to be used, operating system available
on the system, languages supported, and limits on primary and secondary storage.

Reliability and Fault Tolerance: Fault tolerance requirements can place a major
constraint on how the system is to be designed. Fault tolerance requirements often
make the system more complex and expensive. Requirements about system
behavior in the face of certain kinds of faults are specified. Recovery requirements
often form integral part of satisfying certain properties that describe what the
system should do if some failure occurs in order to ensure certain properties.
Reliability requirements are very important for critical applications.

 Requirements Analysis

65

Security: Security requirements are particularly significant in defense and many
other database systems. Security requirements place restrictions on the use of
certain commands, control access to data, provide different kinds of access
requirements for different people, require the use of passwords and cryptography
techniques, and maintain a log of activities in the system.

External Interface Requirements

All the possible interactions of the software with people, hardware, and other
software should be clearly specified. For the user interface, the characteristics of
each user interface of the software product should be specified. User interface is
increasingly becoming more important and must be given proper attention.
A preliminary user manual should be created with all user commands, screen
formats, an explanation of how the system will appear to the user, and feedback
and error messages. Like other specifications, these requirements should also be
precise and verifiable. So, a statement like “the system should be user friendly”,
should be avoided in preference to statements like “commands should be no
longer than 6 characters”, “command names should reflect the function they
perform” etc.

For hardware interface requirement, SRS should specify the logical characteristics
of each interface between the software product and the hardware components. If
the software is to execute on existing hardware or on pre-determined hardware, all
the characteristics of the hardware, including memory restrictions, should be
specified. In addition, the current use and load characteristics of the hardware
should be given.

The interface requirement should specify the interface with other software which
the system will use or which will use the system. This includes the interface with
the operating system and other applications. The message content and format of
each interface should be specified.

13.3 Structure of Requirements Document

All the requirements for the system have to be included in a document. The
requirements document should be clear and concise. For this, it may be necessary
to organize the requirements document into sections and subsections. There can
be many ways to structure a requirements document. The outline document will be
as follows:

1. Introduction

 1.1 Purpose

 1.2 Scope

 1.3 Definitions, Acronyms and Abbreviations

 1.4 References

 1.5 Overview

2. General Description

 2.1 Product Perspective

 2.2 Product functions

 2.3 User Characteristics

 2.4 General Constraints

 2.5 Assumptions and Dependencies

 System Analysis and Design

66

3. Functional Requirements

 3.1 Functional Requirement 1

 3.1.1 Introduction

 3.1.2 Inputs

 3.1.3 Processing

 3.1.4 Outputs

 3.2 Functional Requirement 2

4. External Interface Requirements

 4.1 User Interfaces

 4.2 Hardware Interfaces

 4.3 Software Interfaces

5. Performance Requirements

6. Design Constraints

 6.1 Standards Compliance

 6.2 Hardware Limitations

7. Other Requirements

The introduction section contains the purpose, scope and overview of the
requirements document. Section 2 describes the general factors that affect the
product and its requirements. Product prospective is the relationship of the product
to other products. Section 3, 4, 5 and 6 specify the particular requirements. If there
are any other requirements that have not been described they are specified in
Section 7.

There are other ways of organizing a requirements document. The key concern is
that once requirements have been identified, the requirements document should be
organized in such a manner that its validation and system design are carried out in
an easy way.

SUMMARY

 System analysis is a systematic investigation of a real or planned system to
determine the functions of the system and how they relate to each other and
to any other system.

 The determination of requirements involves studying the existing system and
collecting details about it to find out what these requirements are.
Requirements determination consists of the three activities of requirements
anticipation, requirements investigation, and requirements specification.

 Fact-finding methods such as interview, questionnaire, on-site record review,
and observation assist analysts if used properly. Each has particular
advantages and disadvantages; none is adequate by itself. Cross-checking the
information obtained during fact finding is very important.

 JAD is a structured process in which users, managers, and analysts work
together for several days in a series of intensive meetings to specify or review
system requirements.

 When initiating a study, analysts want to know why and how certain
activities are performed and what data are used in the work. Timing,
frequency and volume of activities are also important facts to collect.

 Requirements Analysis

67

 Decision trees are presentations of decision variables that are graphic and
sequential, showing which conditions to consider first, which second, and so
on. The root of a decision tree is the starting point for analyzing a specific
situation, and the branches indicate the sequence of decisions leading up to
the proper action to be taken.

 An alternative tool, decision tables, relates conditions and actions through
decision rules. A decision rule states the conditions that must be satisfied for
a particular set of actions to be taken. The decision rule incorporates all the
conditions that must be true at one time, not just one condition.

 Structured English is used to state decision rules. The three types of
statements are termed sequence structures, decision structures, and iteration
structures. These statements show unconditional actions, repetitive actions,
and actions that occur only when certain conditions occur.

 Structured English offers a concise way of summarizing a procedure, where
decisions must be made and actions taken. It can be reviewed by other
persons quite easily so that possible misunderstanding and mistakes can be
detected and corrected.

 Structured Analysis is a widely used system modeling technique for
understanding real world systems before they are built. It is based on
functional decomposition of the problem domain.

 Data flow analysis consists of four tools: data flow diagrams, data
dictionaries, data structure diagrams, structure diagrams, and structure charts.
The first two are developed during requirements determination while the later
two are most useful during systems design.

 A data flow diagram is a graphic description of a system or portion of a
system. It consists of data flows, processes, sources, destinations, and stores
all described through the use of easily understood symbols.

 Physical data flow diagrams are implementation-dependent. They show the
actual devices, departments, and people etc., involved in the current system.
Logical data flow diagrams, in contrast, describe the system independently of
how it is actually implemented. That is, they show what takes place, rather
than how an activity is accomplished. Both types of data flow diagrams
support a top-down approach to systems analysis, whereby analysts begin by
developing a general understanding of the system and gradually explore
components in greater detail. As details are added, information about control
can also be included, although upper-level general diagrams are drawn
without showing specific control issues to ensure focus on data and
processes.

 The data dictionary stores descriptions of data items and structures, as well as
systems processes. It is intended to be used to understand the system by
analysts, who retrieve the details and descriptions it stores, and during
systems design, when information about such concerns as data length,
alternate names (aliases), and data use in specific processes must be
available. The data dictionary also stores validation information to guide the
analysts in specifying controls for the system’s acceptance of data.

 The dictionary also contains definitions of data flows, data stores, and
processes.

 System Analysis and Design

68

 Data dictionaries can be developed manually or using automated systems.
Automated systems offer the advantage of automatically producing data
elements, data structures, and process listings. They also perform cross-
reference checking and error detection, important advantages when working
on large systems that must be error free. Automated dictionary systems are
becoming the norm in the development of computer systems.

 The E-R diagram is a model of entities in the business environment, the
relationships among the entities, and the attributes or properties of both the
entities and their relationships.

 Once the analysis is complete, the requirements must be written or specified.
The final output is the Software Requirements Specification Document
(SRS). Each and every SRS contains some characteristics and also some
components like functionality, performance and design.

Chapter III

System Design
After reading this chapter, you will be conversant with:

 Design Objectives

 Designing an Information System

 Design Specifications

 System Flowcharts

 Structured Flowcharts

 Database Design

 File Organization

 Design of Computer Output

 Design of Input

 User Interface Design

 Designing Interfaces and Dialogues

 Coupling and Cohesion

 System Analysis and Design

70

When a problem is encountered, a solution must be designed. Thus, the design
phase is the first step in proceeding from “problem domain” towards “solution
domain”. In finding a solution, requirements are translated into ways of meeting
them. The deign phase focuses on the detailed implementation of the system
recommended in the feasibility study. Emphasis is on translating performance
specifications into design specifications. The design phase is a transition from a
user-oriented document (system proposal) to a document oriented to the
programmers or data base personnel. The objective of the software design phase
is to transform the contents of Software Requirement Specification (SRS) into
design that is implemented using some programming language i.e., plan a solution
for the requirements specified in the SRS document. It is an iterative process
which transforms the requirements into a “blue print” for construction. The design
will determine the success of the system. Through design, system analysts can
influence the effectiveness of a user, whether for the processing of transactions or
for managing the activities of the organization. Output of design phase is called the
System Design Specification (SDS) Document.

1. DESIGN OBJECTIVES

System Design is a bridge between the requirements specifications and the final
solution. Systems design goes through two phases of development:

 Logical design.

 Physical design.

1.1 Logical Design

A Data Flow Diagram (DFD) shows the logical flow of a system and defines the
boundaries of the system. It describes the inputs (source), outputs (destination),
databases (data stores), and procedures (data flows), all in a form that meets the user's
requirements. When analysts prepare the logical system design, they specify the
user needs at a level of detail that virtually determines the information flow into
the system and the required data resources. The design covers the following:

i. Reviews the current physical system, its data flows, file contents, volumes,
frequencies, etc.

ii. Prepares output specifications that is, it determines the format, content,
and frequency of reports, including terminal specifications and locations.

iii. Prepares input specifications that is, it determines format, content and most of
the input functions. This includes determining the flow of the document from
the input data source to the actual input location.

iv. Prepares security and control specifications. This includes specifying the rules
for edit correction backup procedures and the controls that ensure processing
and file integrity.

v. Specifies the implementation plan.

vi. Prepares a logical design walkthrough of the information flow, output and
input, controls, and implementation plan.

vii. Reviews benefits, costs, target dates and system constraints.

1.2 Physical Design
Physical design follows logical design. It produces the working system by defining
the design specifications that specify the tasks that the system must carry out. In
the design stage, the programming language and the platform in which the new

 System Design

71

system will run are also decided. Specifically, physical system design consists of
the following steps:

i. Design the physical system:

 Specify input/output media.

 Design the database and specify back up procedures.

 Design physical information flow through the system and a physical
design walkthrough.

ii. Plan system implementation:

 Prepare a time-table for conversion and a target date.

 Determine training procedure, courses and timetable.

iii. Devise a test and implementations plan and specify any additional hardware/
software.

iv. Make available benefits, costs, conversion date, and system constraints
(legal, financial, hardware, etc).

2. DESIGNING AN INFORMATION SYSTEM

The objectives in designing an information system are as follows:

 Specify the Logical Design Elements

 Support Business Activities

 Meet User Requirements

 Making available a system that is convenient and easy to use.

 Making available Software Development Specifications

 Conform to Design Standards.

Now, we shall discuss these objectives in detail:

2.1 Specify the Logical Design Elements

In Systems designing, the first step is logical design and this is followed by
physical construction of the system. When analysts formulate a logical design,
they write the detailed specifications for the new system; they highlight its
features: the outputs, inputs, files and databases, and procedures consistent with
project requirements. The statement of these features is termed as the design
specifications of the system.

The logical design of an information system is like the engineering blueprint of an
automobile: it shows the major features (such as the engine, transmission, and
passenger areas) and their relationship to one another. The reports and outputs of
the analyst are like the components designed by an engineer. Data and procedures
are linked together to produce a working system.

In designing an inventory system, for example, the system specifications include
reports and output screen definitions describing stock on hand, stock additions and
withdrawals, and summarizing transactions that occur throughout, say, in a month
of operation. The logical design also specifies input forms and screen layouts for
all transactions and files for maintaining stock data, transaction details, and
supplier data. Procedure specifications describe methods to enter data, produce
reports, copy files, and discover problems if any.

Physical construction activity, which follows logical design, produces program
software, files and a working system. Design specifications instruct programmers
about the activities of the system. The programmers in turn write the programs that
accept input from users, process data, produce reports, and store data in the files.

 System Analysis and Design

72

2.2 Support Business Activities

A fundamental objective in the design of an information system is to ensure that it
supports the business activity for which it is developed. The computer and
communications technology specified in the design should always be secondary to
the results the system is intended to produce.

For example, if it is essential for an organization to transfer information very
quickly, along its various units to remain competitive, then the design
specifications of the information system must be based around this essential
business requirement. In this environment, a system that is not efficient in
transferring information at the requisite speed will hamper business. For example,
an airline reservation system that does not tell users quickly whether seats are
available on a specific flight or an automated teller system in a bank that is
operationally inefficient for customers to instantly find out their current account
balance are not of any use. These activities are essential to their respective
businesses and the information system must support them.

The design must fit the way a firm does business. If a sales system is designed to
work best for orders that are paid in cash, when the firm offers a liberal credit
facility, neither management nor customers will be very happy. Even if the
information system functions well in technical terms, it will not fulfill the business
objective.

These examples demonstrate the importance of fitting the system to the needs of
the business, an objective that should guide virtually all systems design decisions.

2.3 Meet User Requirements

User requirements are translated into system characteristics during design. An
information system satisfies user needs if it accomplishes the following:

 Satisfies the right procedures properly.

 Presents information and instructions in an acceptable and effective manner.

 Produces accurate results.

 Provides an acceptable interface and method of interaction.

 Is perceived by users as a reliable system.

In systems analysis, the priority is to obtain the right system along with getting the
system right. The objective of systems design is to achieve both of these
objectives.

2.4 Convenient and Easy to Use

Many technical features of an information system such as reliability, accuracy, and
processing speed are secondary to the human aspects of a system design.
Therefore, analysts strive to design the system that can be easily engineered for the
convenience of the people by including desirable ergonomic features.

2.4.1 HUMAN ENGINEERING

After the information system is installed, managers and staff members begin
interacting with the system on an ongoing basis. After the use of installed system
becomes routine, end-users scrutinize and test its features. It is in this context that
human engineering features often exceed technical features in importance.
If information systems are not designed for people, they may fail.

 System Design

73

The analyst should strive to design a system that:

 Incorporates system features that are easy to understand and use.

 Does not allow user errors or carelessness.

 Prevents failures or improper procedures that will give incorrect results or be
detrimental to the organization.

 Provides enough flexibility to accommodate different user needs of
individuals.

 Is convenient with regard to user’s familiarity with the system.

 Generally functions in a manner that seems natural to the user.

2.4.2 ERGONOMIC DESIGN
Ergonomics deals with the physical factors of an information system that affect the
performance, comfort and satisfaction of direct users. The design of terminals,
chairs, and other equipment influences the amount of fatigue and strain that
accompanies the usage of these items. These factors in turn result in the
introduction of errors during data entry, user efficiency and even absenteeism.

Ergonomics plays a vital role in the selection of equipment and in the design of
work areas. Ergonomic factors must also be considered when selecting colors for
the presentation of information, location of command keys, or methods of
interaction with the system.

2.5 Making Available Detailed Software Development Specifications
Systems design includes formulating software specifications. The specifications
state input, output, and the processing functions and algorithms used to perform
them. Software modules and routines that perform specific functions and the
procedures for constructing them are specified as well. Selection of programming
languages, software packages, and software utilities occurs during the logical
design process and the recommendations are included in the software
specifications.

2.6 Conform to Design Standards
The objectives of systems design are broad and affect many aspects of both the
application and the organization in which the system will be used. Hence systems
development standards are essential. Systems design specifications are established
within these standards. The examples of design standards are:

 Data Standards: Guidelines for data item names, length, and type
specifications that are used for all applications developed by the information
systems group.

 Coding Standards: Formal abbreviations and designations to describe
activities and entities within an organization (e.g., customer categories and
transaction types).

 Structural Standards: Guidelines on structuring the system, reuse of
software modules and software. Policies on software modularization,
structured coding and the interrelation of system components.

 Documentation Standards: Descriptions of systems design features,
interrelation of components, and operating characteristics that can be
reviewed to learn the details of the application.

Many organizations have a quality control department that is responsible for
reviewing all information system design specifications as well as the completed
system itself to ensure that the application conforms to standards.

 System Analysis and Design

74

3. DESIGN SPECIFICATIONS
Design specification describes the features and components of the system.
It specifies the features a system analyst must design. The system elements must
be addressed in the formal design specifications.

3.1 Elements of the Design
The components of an information system described during requirements analysis
are the focal points in systems design. Analysts must design the following elements:

 Data Flows

 Data Stores

 Processes

 Procedures

 Controls

 Roles.

Data Flows: The movement of data into, around, and out of the system.

Data Stores: Temporary or permanent collection of data.

Process: Activities to accept, manipulate, and deliver data and information. May
be manual or computer-based.

Procedures: Methods and routines for using the information system to achieve the
intended results.

Controls: Standards and guidelines for determining whether activities occur in the
anticipated or accepted manner, that is, “under control”. It also specifies actions to
take when problems or unexpected circumstances are detected. It may include the
reporting of exceptions or procedures for correcting problems.

Roles: The responsibilities of all persons involved with the new system, including
end-users, computer operators, and support personnel are defined. The full
spectrum of system components, including input of data to distribution of output or
results are covered. Roles are often stated in the form of procedures.

3.2 Design of Output
Output refers to the results and information that are generated by the system. For
many end-users, output determines the utility for developing the system and the
basis on which they will evaluate the usefulness of the application. Most end-users
will not actually operate the information system or enter data through
workstations, but they will use the output generated by the system.

When designing output, system analysts must accomplish the following:

 Determine what information to present.

 Decide whether to display, print, or present the output information in audio
form and select the medium accordingly.

 Arrange the presentation of information in an acceptable format.

 Decide the way of disturbing the output to intended recipients.

The arrangement of information on a display or printed document is termed as
layout.

Accomplishing the general activities listed above will require specific decisions,
such as whether to use preprinted forms when preparing reports and documents,
how many lines to plan on a printed page, or whether to use graphics and color.

 System Design

75

The output design is specified on layout forms, sheets that describe the location
characteristics (such as length and type), and format of the column headings and
page layout.

The goal of designing efficient and intelligible output design is to improve the
system’s relationship with the user and help in decision-making. A major form of
output is a hard copy from the printer. Printouts should be designed around the
output requirements of the user. The output devices depend on factors such as
compatibility of the device with the system, response time requirements, expected
print quality, and number of copies needed. The following media devices are
available for providing computer-based output:

1. MICA readers.

2. Line, matrix, and daisy wheel printers.

3. Computer Output Microfilm (COM).

3.3 Design of Files
The designing files includes decisions about the nature and content of the file itself
such as whether it is to be used for storing transaction details, historical data, or
reference information. Some of the decisions made during file design are as
following:

 The data items to be included in a record format within the file.

 Length of each record based on the characteristics of the data items on which
it is based.

 The sequencing or arrangement of records within the file (the storage
structure, such as sequential, indexed, or relative).

Not all new information system applications require the designing of all files used
by them. For example, some master files may already exist because they are used
in other existing applications. A new application may need to reference only the
existing master file. In this instance, the details of the file are included in the
application design specifications, but the file itself is not designed.

3.4 Design of Database Interactions
Many information systems interact with databases that span multiple applications.
Because of the importance of databases to many systems, their design is
established and monitored by a database administrator, who has the responsibility
for developing and maintaining the database. In these instances, the system analyst
does not design a database but rather consults the database administrator to
determine the most appropriate way of interacting with the database.

The analyst provides the database administrator with the descriptions of

 Data needed from the database, and

 Actions that will affect the database (for example, retrieve data only, change
the data values, or enter new data into the database).

The responsibilities of the database administrator are as follows:

a. Evaluate the appropriateness of the analysts’ request.

b. Describe the methods for interaction with the database.

c. Ensure that the application cannot damage the database or adversely affect the
needs of other information system applications in any way.

 System Analysis and Design

76

3.5 Design of Input
Systems analysts decide the following input design details:

 What data to input.

 What medium to use.

 How the data should be arranged or coded.

 The dialogue to guide users in providing input.

 Data items and transactions needing validation to detect errors.

 Methods for performing input validation and steps to follow when errors
occur.

The design decisions for handling input specify how data are accepted for
computer processing. Analysts decide whether the data are entered directly,
perhaps through a workstation, or by using source documents such as sales slips,
bank checks, or invoices where the data are transferred into the computer for
processing.

The design of input also includes specifying the means by which end-users and
system operators direct the system with regard to acceptance of input, production
of a report, or end processing.

Online systems include a dialogue or conversation between the user and the
system. Through dialogue, users request system services and tell the system when
to perform a certain function. The nature of online conversation often makes the
difference between a successful and unacceptable design. For instance, a blank
display screen would reflect poor design and result in ambiguity regarding the
follow-up action and also confuse a user about the action that is to be taken next.

The arrangement of messages and comments in online conversations, as well as
the placement of data, headings, and titles on display screens or source documents,
is also part of input design. Sketches of each are generally prepared to
communicate the arrangement to users for their review, and to programmers and
other members of the systems design team.

The goal of designing input data is to make data entry as easy, logical, and free
from errors as possible. In entering data, operators need to know the following:

 The allocated space for each field.

 Field sequence, which must match the field sequence in the source document.

 The format in which data fields are entered; for example, entry of data in the
date field is in the specified format say mm/dd/yy.

3.6 Design of Control
The systems analyst must assume that mistakes will be made in entering data or in
requesting the performance of certain functions. Some mistakes are very minor
and inconsequential, but others can be so serious that they could result in
destruction of data or improper use of the system. Even if there is only a slight
chance that a serious error will occur, a good information system design will offer
the means for detecting and handling the error.

Input controls provide ways to:

1. Ensure that only authorized users access the system.

2. Guarantee that transactions are acceptable.

3. Validate the data for accuracy.

4. Determine whether any necessary data have been omitted.

 System Design

77

3.7 Design of Procedures
Procedures specify what tasks must be performed in using the system and who is
responsible for carrying them out. Important procedures include:

Data Entry Procedures: Methods for capturing transaction data and entering it
into the information system (for example, sequence for entering data items
recorded on source documents).

Run-time Procedures: Steps and actions taken by system operators and, in some
cases, end-users who are interacting with the system to achieve the desired results
(for example: mounting disk packs or loading printers with preprinted forms).

Error-Handling Procedures: Actions to be taken when unexpected results occur
(for example, an error occurs when the system attempts to read data from a file or
the printer jams partway through a long print run).

Security and Backup Procedures: Actions to protect the system and its resources
against damage (for example, when and how to make duplicate copies of master
files or segments of a database).

These procedures will be written and formally described as part of the
documentation for the system.

3.8 Design of Program Specifications
Program specifications also constitute a part of design activity. They describe how
to transform the system design specifications – for output, input, files, processing,
and so on – into computer software.

Designing computer software is important to ensure that,

 The actual programs produced perform all tasks and do so in the manner
intended.

 The division of the software into modules permits testing and validation to
make it sure that the procedures are correct.

 Future modifications can be made in an efficient manner and with a
minimum disruption to the design of the system.

A particular software system will be designed just once, but it will be used
repeatedly and will undergo changes as the needs of users change. The methods
for developing the design and for specifying the details will vary depending on the
practices followed in a particular organization.

4. SYSTEM FLOWCHARTS
A system flowchart describes the data flow for a data processing system. It
provides a logical diagram of the way the system operates. It represents the flow of
documents and the operations performed in data processing systems. It also
reflects the relationship between input and processing of data and generation of
output. Following are the features of system flowcharts:

 The sources from which data is generated and the accessories used for
generating data.

 Various processing steps involved.

 The intermediate and final output prepared and the devices used for their
storage.

A systems flowchart is commonly used in analysis and design. Flowlines
represent the sequences of processes, and other symbols represent the inputs and
outputs to a process.

 System Analysis and Design

78

Below given are the Symbols used in System Flow Chart.

Figure 1: System Flowchart Symbols

The symbols are linked with directed lines (lines with arrows) showing the flow of
data through the system.

An example of a system flowchart is shown in figure 2.

Figure 2: Example of a System Flowchart

Transactions are input, validated and sorted, and then used to update a master file.

Note that the arrows show the flow of data through the system. The dotted
line shows that the Updated master file is then used as input for the next
Update process.

 System Design

79

Another example of a system flowchart that represents Sales Transaction
Processing is shown in figure 3.

Figure 3: An Example of System Flowchart

5. STRUCTURED FLOW CHARTS
Structured flow diagrams allow graphical representation of structured programs.
Statement sequences are specified vertically, selection is specified by horizontal
choices, and repetition is specified by a repeat indicator. Program embedding is
specified by chart reference, diagonal layout, or block interiors. Flow diagrams are
often limited to one page with a single entrance and exit. Machine readable flow
charts are simplified if control is specified separately from statement definition.

Structured Flow Chart is used as a tool for Software Design and Documentation.
Nassi and Shneiderman published a new flowcharting language with a structure
closely similar to that of structured code. They provided a structure that can be
retained by programmers who develop the application software. They are also called
as Nassi – Shneiderman charts. The advantages of these charts are as follows:

i. The scope of iteration is well-defined and visible.

ii. The scope of IF THEN ELSE clauses is well-defined and visible; moreover,
the conditions or process boxes embedded within compound conditions can
be seen easily from the diagram.

iii. The scope of local and global variables is immediately obvious.

iv. Arbitrary transfers of control are impossible.

v. Complete thought structures can and should fit on no more than one page
(i.e., no off-page connectors).

vi. Recursion has a trivial representation.

vii. These charts are adaptable to the peculiarities of the system or language they
are used with.

By combining and nesting the basic structures, all of which are rectangular, a
programmer can design a structured branch-free program.

 System Analysis and Design

80

5.1 Basic Elements
There are three basic elements that are used in developing structured charts.
They are:

i. Process: The basic process symbol is a rectangle representing assignments,
calls, input/output statements, or any other sequential operations. In addition,
a process symbol may contain other symbols nested within it. A name or
brief description written in the box states the purpose of the process.

ii. Decision: The decision symbol represents alternative conditions that are

possible and that program must handle them in a particular manner. They

show an equivalent of the IF-THEN-ELSE structures in the Structured

English. It may show actions for more than two alternatives at the same time.

The symbol used to represent a decision is given below.

Figure 4: Decision symbol

 This IF-THEN-ELSE symbol contains the test or decision in the upper

triangle and the possible outcomes of the test in the lower triangles. “Yes”

and “No” may be substituted for “True” and “False” and there is no particular

objection to switching them right and left, although consistency is desirable.

The rectangles contain the functions to be executed for each of the outcomes.

Notice that the ELSE and THEN clause boxes are actually process symbols

and may contain any valid process statements or nested structures.

iii. Iteration: Repeating processes i.e., while a certain condition exits or until a

condition exits, are represented by an iteration symbol. It shows the scope of

the iteration, including all processes and decisions that are contained within

the loop. One of the three symbols may be used depending on whether loop

termination is at the beginning or at the end of the loop.

Figure 5 shows a DO-WHILE symbol used for loops that test a condition at the

beginning.

Figure 5: DO-WHILE Symbol

 System Design

81

Figure 6 shows a DO-UNTIL symbol used for loops that test condition for the
termination of the loop at the end.

Figure 6: DO-UNTIL Symbol

Figure 7 is a combination for loops with compound tests and may also be used for
special constructs such as DO-FOREVER or for setting off BEGIN/END blocks.

Figure 7: DO-FOREVER Symbol

The CASE structure is represented by the symbol shown in figure 8. This form of
CASE requires the setting of a variable to an integer value, and the choice of path
is based on the value of that variable.

Figure 8: CASE Structure Symbol

Figure 9 depicts a more powerful form of CASE, but one that requires the designer
to be certain that the conditions chosen are mutually exclusive and cover all
necessary condition testing.

Figure 9

Nesting of structures to create programs should now be an obvious extension of
the use of basic symbols.

 System Analysis and Design

82

Figure 10 shows a structured flow chart to calculate and print an FICA report in a
style useful to designers.

Figure 10: An Example of Structured Flow Chart

Figure 11 shows the same chart written in a style closer to the programming
language, that is used by the programmers.

Figure 11

 System Design

83

6. DATABASE DESIGN
File and database design occur in two steps. Logical and physical design activities
are undertaken in parallel along with other systems design activities. We collect
the detailed specifications of data necessary for logical database design. This
design is driven not only from the previously developed E-R data model for the
applications but also from form and report layouts. The designs for logical
databases and system inputs and outputs are then used in physical design activities
to specify computer programmers, database administrators, and others the way of
implementing new information system.

6.1 Process of Database Design
In this section, we will discuss methods of developing logical and physical
database designs during the system design phase.

6.1.1 LOGICAL DESIGN
It is based on the conceptual data model. Four key steps that are used in logical
database design are:

i. Develop a logical data model for each known user interface for the
application using normalization principles.

ii. Combine normalized data requirements from all user interfaces into one
consolidated logical database model.

iii. Translate the conceptual E-R data model for the application into normalized
data requirements.

iv. Compare the consolidated logical database design with the translated E-R
model and produce one final logical database model for the application.

6.1.2 PHYSICAL DESIGN
It is based on the results of logical database design. The key decisions inclded:

a. Choosing storage format for each attribute from the logical database model.

b. Grouping attributes from the logical database model so as to form physical
records.

c. Arranging related records in secondary memory (hard disks and magnetic
tapes) so that records can be stored, retrieved and updated rapidly.

d. Selecting media and structures for storing data to make access more efficient.

6.1.3 DELIVERABLES AND OUTCOME

 Logical database design must account for every data element, system input or
output.

 Normalized relations are the primary deliverables.

 Physical database design results in converting relations into files.

6.2 Relational Database Model
In this model, data is represented as a set of related tables or relations. Relation is a
named, two-dimensional table of data. Each relation consists of a set of named
columns and an arbitrary number of unnamed rows. The following table shows an
example of relation named EMP. This relation contains the attributes: Emp-id,
Name, Dept, Salary. There are five rows corresponding to a record that contains
data values for an entity.

Emp-id Name Dept Salary

10 Elias M.Awad Info.systems 15000

25 James A.Senn Accounting 21090

28 Valacich Marketing 21000

35 Venu Gopal Finance 34500

12 Rama Krishnan Info systems 34200

 System Analysis and Design

84

We can express the structure of the relation by a shorthand notation in which the
name of the relation is followed by the names of the attributes in the relation i.e.

 EMP (Emp-id, Name, Dept, Salary)

Not all the tables are relations. Relations have several properties that distinguish
them from non-relational tables:

 Entries in cells are simple.

 Entries in columns are from the same set of values.

 Each row is unique.

 The sequence of columns can be interchanged without changing the meaning
or use of the relation.

 The rows may be interchanged or stored in any sequence.

6.3 Well-Structured Relation
A well-structured relation is that which contains a minimum amount of
redundancy and allows users to insert, modify and delete the rows without errors
or inconsistencies. The above defined relation (EMP) is a well-structured relation.
Each row of the table contains data describing one employee, and any modification
to an employee’s data is confined to one row of the table.

6.4 Normalization
Normalization is the process of converting complex data structures into simple and
stable data structures. It is based on well-accepted principles and rules. It results in
the formation of tables that are related to each other. This group of tables
constitute a database. There are actually four levels of normalization in Relational
Database Management System (RDBMS). Each level reduces the complexity of
the previous level and also the redundancy of data occurrence. We shall describe
the First normal form, the Second normal form, the Third normal form and the
Boyce-codd normal form with examples.

Suppose we have an entity customer and attributes like cusno, name and address
are required. We can perceive that for a particular cusno, only one name and
address are possible. Hence, the attributes name and address are said to be
functionally dependent on the attribute cusno.

i. First Normal Form: A relational scheme is said to be in first normal form if
only one value is associated with each attribute and the value is not a set of
values or a list of values. A database scheme is in first normal form if every
relational scheme included in the database scheme is in first normal form.

 Example: Consider a table which is unnormalized as given below:

Cuscode Shopname Itemcode Quantity

100 Sh1 112

17

18

2

4

3

121 Sh2 18

111

2

6

150 Sh3 112 1

 System Design

85

 In the first normal form, the above table appears as:

Cuscode Shopname Itemcode Quantity
100

100

100

121

121

150

Sh1

Sh1

Sh1

Sh2

Sh2

Sh3

112

17

18

18

111

112

2

4

3

2

6

1

ii. Second Normal Form: A relation scheme R<S, F> is in second normal
form if it is in the first normal form and if all non-prime attributes are fully
functionally dependent on the relation key(s). A database scheme is in
second normal form if every relation scheme included in the database scheme
is in second normal form. For a table to be in the second normal form, it shall
also be in first normal form and every attribute should functionally be
dependant on the whole key.

 Example: Consider the table given in the first normal form. In the second
normal form, the redundancy of data observed in the table of first normal
form can be overcome to some extent by constructing the following two
tables.

Cuscode Shopname

100

121

150

Sh1

Sh2

Sh3

Cuscode Itemcode Quantity

100
100
100
121
121
150

112
17
18
18

111
112

2
4
3
2
6
1

iii. Third Normal Form: A relation scheme R<S, F> is in third normal form if
for all non-trivial functional dependencies in F of the form X→A, either X
contains a key (i.e., X is a superkey) or A is a prime attribute. A database
scheme is in third normal form if every relation scheme included in the
database scheme is in the third normal form. For a table to be in the third
normal form, it should be in the second normal form and each non-key
attribute should functionally be dependent only on the primary key. In the
third normal form relation, every non-prime attribute is non-transitively and
fully dependent on the candidate key.

 Example: Let us consider the table shown below:

Cuscode Shopname areacode

100

121

150

171

151

190

Sh1

Sh2

Sh3

Sh4

Sh5

Sh6

A1

A2

A3

A4

A5

A6

 System Analysis and Design

86

 In the above table, the primary key is cuscode. The customer attribute is
dependent on shopname. The attribute areacode is dependent on the
shopname which shows an indirect dependence on the primary key. To
prevent the problems faced during insertion, updation or deletion, the table
given in the above example is split up into two tables given below:

Cuscode Shopname

100

121

150

170

180

190

Sh1

Sh2

Sh3

Sh4

Sh5

Sh4

Shopname Areacode

Sh1

Sh2

Sh3

Sh4

Sh5

A1

A2

A3

A4

A5

iv. Boyce-Codd Normal Form: A relation is in Boyce-Codd Normal Form
(BCNF) if and only if every determinant in the relation is a candidate key. A
determinant is an attribute, or a group on which some other attribute is fully
functionally dependent. Boyce-Codd normal form is based on functional
dependencies that take into account all candidate keys in a relation. To test
whether a relation is in BCNF, we identify all the determinants and make
sure that they are candidate keys. For example, consider the relation,
STUDENT_ADVISOR as shown in Table given below:

 STUDENT_ADVISOR

SID Major Advisor Maj_GPA

123 Physics Hawking 4.0

123 Music Mahler 3.3

456 Literature Michener 3.2

789 Music Bach 3.7

678 Physics Hawking 3.5

Functional Dependencies in STUDENT_ADVISOR

The above relation is in third normal form but not in BCNF. It can be converted
into BCNF in two steps.

SID Major Advisor Maj_GPA

 System Design

87

In the first-step, the relation is modified so that the determinant in the relation that
is not a candidate key becomes a component of the primary key of the revised
relation. The attribute that is functionally dependent on that determinant becomes a
non-key attribute. This is a legitimate restructuring of the original relation because
of the functional dependency. The result of applying this rule to
STUDENT_ADVISOR is shown below:

The second step of the conversion process is to decompose the relation to
eliminate the partial functional dependency. This results in two relations. The two
relations (i.e. STUDENT and ADVISOR) with sample data are shown in the tables
given below:

 STUDENT

SID Advisor Maj_GPA

123 Hawking 4.0

123 Mahler 3.3

456 Michener 3.2

789 Bach 3.7

678 Hawking 3.5

 Advisor

Advisor Maj_GPA

Hawking Physics

Mahler Music

Michener Literature

Bach Music

Hawking Physics

The result of normalization is that every non-primary key attribute depends upon
the whole primary key.

6.5 Physical File and Database Design
The following information is required for designing physical files and databases:

 Normalized relations including volume estimates.

 Definitions of each attribute.

 Descriptions of where and when data are used, entered, retrieved, deleted and
updated (including frequencies).

 Expectations or requirements for response time and data integrity.

 Descriptions of the technologies used for implementing the files and
database.

Normalized relations are the result of logical database design. Statistics on the
number of rows in each table as well as other information have to be collected
during requirements determination in systems analysis.

SID Advisor Major Maj_GPA

 System Analysis and Design

88

Let us consider various aspects of database design.

6.5.1 DESIGNING FIELDS
A Field is the smallest unit of named application data recognized by system
software. Each attribute from each relation will be represented as one or more
fields. For example, student name attribute in a normalized student relation might
be expressed as first name, middle name and last name.

6.5.2 CHOOSING DATA TYPES
Data Type is a coding scheme recognized by system software for representing
organizational data. Four objectives of the data type are:

1. Minimize storage space.

2. Represent all possible values for the field.

3. Improve data integrity for the field.

4. Support all data manipulations desired on the field.

6.5.3 METHODS OF CONTROLLING DATA INTEGRITY
 Default Value: A value that a field will assume unless an explicit value is

entered for that field.

 Picture Control (or Template): A pattern of codes that restricts the width and
possible values for each position of a field.

 Range Control: Limits range of values which can be entered into field.

 Referential Integrity: An integrity constraint specifying that the value (or
existence) of an attribute in one relation depends on the value (or existence)
of the same attribute in another relation.

 Null Value: A special field value, distinct from 0, blank or any other value,
which indicates that the value for the field is missing or otherwise unknown.

6.6 Designing Physical Tables
Relational database is a set of related tables. In logical database design, those
attributes are grouped into a relation that concern some unifying, normalized
business concept. In contrast, a physical table is a named set of rows and columns
that specifies the fields in each row of the table.

6.7 Design Goals
i. Efficient use of secondary storage (disk space):

 Disks are divided into units that can be read in one machine operation.

 Space is used most efficiently when the physical length of a table row is
compatible with storage unit.

ii. Efficient data processing:

 Data are most efficiently processed when stored next to each other in
secondary memory.

6.8 Denormalization
It is the process of splitting or combining normalized relations into physical tables
based on affinity of use of rows and fields. It optimizes certain operations at the
expense of others. Three common situations where denormalization may be used:

i. Two entities with a one-to-one relationship.

ii. A many-to-many relationship with nonkey attributes.

iii. Reference data.

6.8.1 ARRANGING TABLE ROWS
The result of the Denormalization is the definition of one or more physical files.
A physical file is a named set of table rows stored in a contiguous section of
secondary memory. Each table may represent a physical file or one file may
represent a whole database. This depends on the database management software
that is used.

 System Design

89

7. FILE ORGANIZATION

File Organization is a technique for physically arranging the records of a file.
Some objectives of file organization are:

 Fast data retrieval.

 High throughput for processing transactions.

 Efficient use of storage space.

 Protection from failures or data loss.

 Minimizing the effort for reorganization.

 Accommodating growth.

 Security from unauthorized use.

7.1 Types of File Organization

There are three commonly used file organization types. They are:

i. Sequential File Organization: In sequential file organization, the rows in
the file are stored in sequence according to a primary key value. Updating
and adding records may require rewriting the file. Deleting records results in
wasted space. Sequential files are very fast when used to process rows
sequentially, but they are essentially impractical for retrieving rows
randomly. Only one sequence can be maintained without duplicating the
rows.

ii. Indexed File Organization: In indexed file organization, the rows are stored
either sequentially or non-sequentially and an index is created that allows
software to locate individual rows. Index is a table used to determine the
location of rows in a file that satisfy some condition. Secondary Index is an
index based upon a combination of fields for which more than one row may
have same combination of values. Following are the guidelines for choosing
indexes:

 Specify a unique index for the primary key of each file.

 Specify an index for foreign keys.

 Specify an index for nonkey fields that are referenced in qualification,
sorting and grouping commands for the purpose of retrieving data.

iii. Hashed File Organization: In hashed file organization, the address for each
row is determined using an algorithm, which converts a primary key value
into a row address. There are several variants of hashed files; the rows are
located non-sequentially as dictated by the hashing algorithm. The retrieval
of random rows is very fast.

7.2 Designing Controls for Files

The goals of the physical table are achieved primarily by implementing controls on
each file. Two other important types of controls are file backup and security.

Backup Techniques include: Periodic backup of files, Transaction log or audit
trail and Change log.

Data Security Techniques include: Coding or encrypting, User account
management and Prohibiting users from working directly with the data. Users
work with a copy which updates the files only after validation checks.

 System Analysis and Design

90

8. DESIGN OF COMPUTER OUTPUT
The term output implies any information produced by an information system in
visual or printed form.

One of the most important aspects of an information system for users is the output
it produces. Without quality output, the entire system may appear to be
unnecessary and the users will avoid using it, possibly causing it to fail. In this
section we will discuss designing of computer output and how to present of
effective information.

When analysts design computer output, they,

 Identify the specific output that is needed to meet the information
requirements.

 Select methods for presenting information.

 Create document, report or other formats that contain information produced
by the system.

The methods of output vary across systems.

8.1 Output Objectives
The output from any system should accomplish one or more of the following
objectives:

 Convey information about past activities, current status, or projections for the
future.

 Signal important events, opportunities, problems, or warnings.

 Trigger an action.

 Confirm an action.

The objectives of using computer output are shown in figure 12.

Figure 12: Different Uses of Computer Output

The design itself begins when the systems analyst identifies the output the system
must produce. In the structured analysis development method, DFDs prepared
earlier in the development process determine the nature of the output needed. Each
data flow carries information that is either used elsewhere in the system or that
leaves the system as external output.

 System Design

91

8.2 Types of Output
System output may be one or more of the following:

 A report.

 A document.

 A message.

Depending on the circumstances and the contents, the output may be displayed or
printed. Output originates from these sources:

i. Retrieval from a data store.

ii. Transmission from a process or system activity.

iii. Directly from an input source.

The following media devices are available for providing computer based output:

i. MICR readers

ii. Line, matrix and daisy wheel printers

iii. COM (computer output microfilm)

iv. CRT screen display

v. Graph plotters

vi. Audio responses.

A system analyst not only selects the output devices but also prepares the format
for editing and generating the final prinout. The standards for printed output are as
follows:

i. Give each output a specific name or title.

ii. Provide a sample of the output layout, including areas where printing may
appear and the location of each field.

iii. State whether each output field is to include significant zeros, spaces between
fields, alphabets or any other data.

iv. Specify the procedures for proving the accuracy of output data.

In online applications, information is displayed on the screen. The layout sheet for
displayed output is similar to the layout chart used for designing input.

9. DESIGN OF INPUT
Inaccurate input data are the most common cause of errors in data processing.
Errors entered by data entry operators can be controlled by input design. Input
design is the process of converting user-originated inputs to a computer-based
format. To decide about the inputs required for a system, several questions need to
be addressed. Some of them are:

 What data needs to be entered into the computer system?

 How much data needs to be input and how often?

 Where does the data come from?

 How will the data be entered into the system?

9.1 Input Data
The goal of designing input data is to make data entry as easy, logical and free
from errors as possible. While entering data, operators need to know the following:

a. The allocated space for each field.

b. Field sequence, which must match that in the source document.

c. The format in which data fields are entered.
In input design, we design the source documents that capture the data and then
Select the media to send input data into the computer.

 System Analysis and Design

92

9.2 Source Document
Source data are captured initially on a paper or as a source document. Source
documents may be entered into the system from punched cards, from diskettes or
even directly through the keyboard. A source document may or may not be
retained in the candidate system. A source document should be logical and easy to
understand. Each area in the form should be clearly identified and should specify
the user what to write and where to write it.

9.3 Input Media and Devices
Source data are input into the system in a variety of ways:

 Punch Cards are either 80 or 90 columns wide. Data are arranged in a
sequential and logical order. Operators use a keypunch to copy data from
source documents onto cards. This means that the source document and card
design must be considered simultaneously.

 Key-to-diskette is modeled after the keypunch process. A diskette replaces
the card and stores up to 325000 characters of data (it is equivalent to the
data stored in 4500 cards). Like cards, data on diskettes are stored in
sequences and in batches. The approach to source document and diskette
design is similar to that of the punched card.

 Magnetic Ink Character Recognition (MICR) translates the special fonts
printed in magnetic ink on cheques into direct computer input. Magnetic
printing is used so that the characters can be reliably read into a system.

 Mark-sensing readers automatically convert marks in predetermined
locations on a card to punched holes on the same card.

 Optical Character Recognition (OCR) readers are similar to MICR readers,
except that they recognize pencil, ink or characters by their configuration
rather than their magnetic pattern.

 Optical bar readers detect a combination of marks that represents data.

 Cathode-Ray Tube (CRT) screens are used for online data entry. CRT screens
display 20, 40 or 80 characters simultaneously on a television-like screen.
They show as many as 24 lines of data.

In addition to determining record media, the analyst must decide on the method of
input and the speed of capture and entry into the system. Processing may be,

1. Sequential.

2. Batched.

3. Random.

The following table shows the type of processing carried out by different input
devices.

Input Device Type of Processing

Key punch/punch card Batch, sequential
Key-to-diskette Batch, sequential (or random)
MICR reader Batch, sequential (or random)
Mark-sensing reader Batch, sequential (or random)
OCR reader Batch, sequential (or random)
Optical bar code Batch, sequential (or random)
Online data entry Online, sequential (or random)

9.4 Online Data Entry
Online data entry makes use of a processor that accepts commands and data from
the operator through a keyboard or a device such as a touch-sensitive screen or
voice input. The input received is analyzed by the processor. It is then accepted or
rejected, or further input is requested. The request for input is in the form of a
message displayed on the screen or conveyed in audio form.

 System Design

93

There are three major approaches for entering data into the computer:

a. Menus.

b. Formatted Forms.

c. Prompts.

Let us study about these approaches in detail:

9.4.1 MENU

A menu is a selection list that simplifies computer data access or entry. Instead of

remembering what to enter, the user chooses a list of options and types the option

letter associated with it. The example given below shows the list of matrix

operations in menu form. A cursor blinking in the space reserved for () ENTER

CHOICE requests the user to type the number that represents the option.

 Matrix Operations

 (1) Addition

 (2) Subtraction

 (3) Multiplication

 (4) Transpose

ENTER CHOICE ()

A menu limits a user’s choice of response but reduces the chances of error in data
entry.

9.4.2 FORMATTED FORM

A formatted form is a preprinted form or a template that requests the user to enter

data in appropriate locations. It is a fill-in-the-blank type form. The form is

displayed on the screen as a unit. The cursor is usually positioned at the first blank.

The user enters his response one line after another until the form is completed.

During this routine, the user may move the cursor up, down, right or left to various

locations for making changes in the response. The following example shows the

formatted form for entering student details:

Student Details

Students Name -----------------

Father’s Name ------------------

ICFAI CET Rank ------------------

Degree with Branch Name ------------------

Marks Secured -------------------

Contact Number 1. --------------------

 2. --------------------

Address ---------------------

 System Analysis and Design

94

9.4.3 PROMPT
In this approach, the system displays one enquiry at a time, asking the user for a
response. The following dialogue represents a typical interaction between the
system and the user at an ATM.

System : Please Insert ATM Card

User : inserts

System : Enter PIN

User : **** (User types password

Most systems edit the data entered by the user. If password is not matching, the
system responds with a message like “INVALID NUMBER”. The user has three
chances to enter the correct password after which the system locks up.

The prompt method also allows the user to input questions and receive response of
the system.

The main limitation with many of the available menus or prompts is that they
require only one item to be entered at a time rather than a string of data items
simultaneously.

9.5 CRT Screen Design
Many online data entry devices are CRT screens that provide instant visual
verification of input data and a means of prompting the operator. The operator can
make any changes desired before the data moves to the system for processing.
A CRT screen is actually a display station that has a buffer for storing data.
A common size display is 24 rows of 80 characters each for 1920 character.

10. USER INTERFACE DESIGN
User interface acts as a means of communication between a user (a human being)
and a computer. A software engineer is responsible for the design of user interface
by applying a set of iterative processes based on pre-defined design principles.

A good design of user interface is critical to the success of a software system.
A good user interface allows people to work with the application without the
need for receiving training or studying the manuals. Unless the software is easy
to use, nobody will make an effort to use it. In the absence of good user
interface, a user commits mistakes, gets frustrated and his efforts to accomplish
the goal go in vain. Users will simply refuse to use the software system if the
interface is difficult to use.

The design of user interface begins with the identification of user, task, and
environmental requirements. After the identification of the user and tasks is over,
user scenarios are created and analyzed in order to define a set of interface objects
and actions. These form the basis for the creation of screen layout that depicts
graphically designed icons and their placement, definition of descriptive screen
text, specification and title for windows, and specification of major and minor
menu items.

User interfaces can be textual or Graphical User Interface (GUI) based. GUIs are
relatively easy to learn and use. Minimal amount of training is required since
multiple screens are presented before the user and he can switch from one screen
to another without losing sight of the original task he started with. User interface
design is a iterative process. Various steps involved are:

 Analyzing the user Developing requirements and activities that are to be
supported by the system.

 Developing screen-based designs that simulate user interaction.

 Evaluating the prototype with the help of the user.

 Feedback from the users is used to refine the user interface design.

A series of these steps finally result in the implementation of user interface.

 System Design

95

10.1 User Interaction
Designers of the user interface should consider two issues – how information from
the user is fed to the computer and how can information from the computer system
be presented to the user. User interface must integrate user interaction and
information presentation. Different forms of interaction are:

 Direct Manipulation: The user interacts with the objects on the screen.
These interfaces have fast and intuitive interaction. They are quite easy to
learn but hard to implement.

 Menu Selection: A command is selected from a list of possibilities. Little
typing is required. But this interaction is a slow process for experienced
users.

 Form Fill-in: Simple data entry interface. A user fills in the fields of a form.
Though this interface is easy to learn, it takes up a lot of screen space.

 Command Language: Special commands with associated parameters are
used to access the services provided by the system. This type of interface is
powerful and flexible. But it is hard to learn.

 Natural Language: The user issues a command in natural language. Such
interfaces can be accessible to casual users. But systems that relay on natural
language are unreliable.

The above-mentioned interaction styles may be combined and an application may
include several such styles. For example, Microsoft Windows supports direct
manipulation of icons, menu-based command selection and also form-based
interfaces.

10.2 Information Presentation
Input information may be directly presented to the user or it may be presented
graphically. The software requirement for information presentation will be
separated from the information itself. The representation on the user’s screen can
be changed without affecting the information or the underlying computational
system. This can be achieved by separating the presentation system from the data.

In model-view-controller approach, users can interact with each presentation using
a style. The information is encapsulated into a model object. Each model view
object has a number of separate view objects associated with it. The controller
object handles user input and device interaction. A model represents numeric data,
in a number of different views such as a histogram or a table. Information that
does not change should be distinguished from dynamic information by using
different presentation styles. If information does not change fast then textual
representation is suitable. If data changes quickly then graphical representation
should be used. When precise alphanumeric information is presented, graphics can
be used to pick up the information from its background. Graphics can attract user’s
attention. Large amounts of information can be presented using abstract
visualizations. Three-dimensional presentations are particularly effective in
product visualizations.

10.3 User Support
User interface should always provide online help. It is the documentation provided
with the system. User guidance covers three areas: the messages generated by the
system in response to user actions, the online help system for ready reference, and
the documentation provided with the system. The designing of messages should
involve professional writers and graphic artists. Various factors that are considered
during the designing of error messages or help text are:

 Context: The help system should be in the current context.

 Experience: Messages should be tailored to the users’ skills as well as their
experience.

 System Analysis and Design

96

 Style: Messages should be addressed in an active rather than passive mode.

 Error Messages: The background and experience of the users should be
anticipated while designing error messages. When users commit some mistake,
they need to have an understanding of that error while using error messages.

10.4 Help System Design
Help system helps the users to understand the error messages. Help systems have a
complex network structure where each frame of information may refer to several
other information frames. The text in the help system should be prepared with the
help of application specialists.

10.5 User Documentation
System manuals provide detailed information about the system’s use and should be
designed such that different classes of system end-users can use it. Different types
of manuals that cater to the needs of different levels of expertise of the users are:

 Functional Description: Briefly describes the services provided by the
system.

 Installation Document: Describes the installation process of the system. It
includes installation instructions and details of how to set up configuration-
dependent files.

 Introductory Manual: Describes the normal usage of the system and also
how to get started and the common system facilities used by the end-users.

 Reference Manual: Describes system facilities, a list of error messages,
causes of these errors and recovery methods.

 Administrator Manual: It describes the repair mechanisms for hardware
failure and methods of connecting new peripherals. It also gives information
about the messages generated when the system interacts with other systems
and the procedures to react to these messages.

10.6 The Golden Rules
There are three important principles (golden rules) given by Theo Mandel that
guide the designing of effective user interfaces. These rules are: (i) Place the user
in control, (ii) reduce the user’s memory load, and (iii) make the interface
consistent. In order to develop such an interface which stands true to these
principles, an organized design process must be conducted.

i. Place the User in Control: A user basically needs a system that obeys his
commands to the maximum possible extent by satisfying all his needs. The
user wants to have complete mastery over the computer. The system should
understand the needs of the user and satisfy those needs and make the task
easier. The constraints and limitations introduced by the designer should
simplify the implementation of the interface. A number of design
principles, given by Mandel that allow the user to maintain control are
given in this regard:

 Define interaction modes in a way that does not force a user into
unnecessary or undesired actions. The current state of the interface
is an interaction mode because through an interface the system takes
commands from the user. For instance, if the user wants to check
spellings of the words typed in a word document, the word processing
software enters the spell check mode. When the user finishes his task
of checking the spellings the software should allow him to exit from
the spell check mode to another mode as desired without much effort
or loss of time.

 System Design

97

 Provide for flexible interaction. There should be adequate choices
provided to different users for interacting with the system based on the
nature of work they wish to perform. For instance, the interaction with
the software might be carried out using keyboard commands, mouse
movements, a digitizer pen, or voice recognition commands. However,
a given action can be performed only using a particular mode of
interaction. For instance, a complex figure cannot be drawn using
keyboard commands.

 Allow user interaction to be interruptible and undoable. Even
when a user is performing a sequence of actions, the interface system
should be flexible enough to allow him to do something interrupting
the current task at hand. The user should also be able to undo any
action previously performed.

 Streamline interaction as skill levels advance and allow the interaction
to be customized. While interacting with the system, it is common for
the users to do the same set of tasks repeatedly. Hence, the design of a
“macro” mechanism enables the users to carry out a set of tasks that
repeat themselves time and again. For instance, in MS-Word, a macro
command can be assigned to a combination of keys on the keyboard and
when this combination is used, the predefined task is performed.

 Hide technical internals from the casual user. The user interface
should be able to hide technical details regarding operating systems, or
file management functions. It should provide the user, the facility to
carry out his tasks or applications without knowing any technical
fundamentals or the internal mechanism of the machine.

 Design for direct interaction with objects that appear on the screen.
The user gets a feeling of control over the system when he is able to
manipulate the objects that are necessary to perform a task in a manner
similar to what would occur if the objects were a physical thing.

ii. Reduce the User’s Memory Load: In a well-designed user interface, a user
is required to remember very less (for instance, the commands) while
interacting with the system. This will in turn reduce the number of errors
committed by the user. In order to reduce the user’s memory load, Mandel
defines certain design principles which are given below:

 Reduce demand on short-term memory. User’s involvement with
complex tasks increases the burden on short-term memory. The
interface should be designed to reduce the need to remember past
actions and results. Visual cues enable users to recognize past actions,
without making strenuous effort to recall them.

 Establish meaningful defaults. The user interface provides a number
of facilities by default for the user to interact with the system.
However, a user also has his own set of individual preferences and
those should be given due recognition while designing the user
interface. A reset option provided to the user would enable him to
redefine the original default values.

 Define shortcuts that are intuitive. When mnemonics are used to
accomplish a system function (for instance, in MS-Word, Ctrl + S is used
to save the document), the mnemonic should convey the action in a way
which is easy to remember. For instance, in Ctrl + S, S stands for SAVE.

 The visual layout of the interface should be based on a real world
metaphor. The user interface is helpful if it uses metaphors to guide
the user. For instance, an E-commerce site uses a trolley wherein users
deposit the articles that they have selected to purchase. This enables the
user to rely on well-understood visual cues, rather than memorizing a
long sequence.

 System Analysis and Design

98

 Disclose information in a progressive fashion. Hierarchical organization
of interface would help the user to navigate through the system in an
organized manner. Information about a task, an object, or some
behavior should be presented first at a high level of abstraction. The
details should be presented after the user indicates his interest by
clicking the hyperlinks with a mouse.

iii. Make the Interface Consistent: The presentation of information to the user
and acquisition of requisite information for further processing by the
interface should be in a consistent fashion. This implies that (i) all visual
information is organized according to a design standard that is maintained
throughout all screen displays, (ii) input mechanisms are constrained to
a limited set that are used consistently throughout the application, and
(iii) mechanisms for navigating from one to another are consistently defined
and implemented.

Following are the set of design principles defined by Mandel to make the interface
consistent:

 Allow the user to put the current task into a meaningful context. User
interfaces need to provide indicators to the users in the form of window titles,
graphic icons, consistent color coding etc., when users are implementing
complex tasks with a number of screen images. These indicators help the
users in knowing the context of the work at hand. In addition, indicators
should also serve the additional purpose of helping the users in keeping track
of their past and future course of action.

 Maintain consistency across a family of applications. A set of all the
applications should implement the same design rules so that a consistency is
maintained in all interactions.

 If past interactive models have created user expectations, do not make
changes unless there is a compelling reason to do so. Once a particular
standard of interaction with the system has been well understood and used by
a large number of users, then the users want the same standard to be
implemented in new user interfaces. For instance, Ctrl+P is the standard to
print the word document. Thus, users do not need to learn and remember new
ways for printing the document. A change of standards will cause confusion
which should be avoided.

11. DESIGNING INTERFACES AND DIALOGUES
An Interface is the common boundary between the user and the computer system
application. Dialogue is the user’s way of interacting with the computer system
and application. Interface and dialogue design focuses on the way information is
provided to and captured from users. It also includes defining the manner in which
humans and computers interact with one another for finding any information.
A good human-computer interface provides a unifying structure for finding,
viewing and invoking the different components of a system.

11.1 Purpose of Interface
Designing an interface will accomplish the following purposes:

 Tell the system what actions to take.

 Facilitate use of the system.

 Avoid user errors.

Systems analysts consider the interface as a window to the system, a view portion
of the entire system’s features. Users tend to view the interface window as the
entire system.

 System Design

99

11.2 Characteristics of Interface
The characteristics of an interface in online systems include the devices used to
enter and retrieve data, the dialogue which prompts and directs users and the
methods and patterns followed in the display of information:

Entry: The information provided by users to request an action that initiates a
response from the system.

Response: A message, prompt, or processing activity that results when an entry is
provided by the user.

Dialogue: Dialogue guides the interaction between the system and the user. The
dialogue strategy determines what information is entered and how responses are
made.

Common interface devices in online systems are keyboard, mouse, light pen,
scanner, touch screen or voice.

11.3 The Process of Designing Interfaces and Dialogues
Designing of interfaces and dialogues is done primarily keeping in mind the needs
of the user. Prototyping methodology is followed for collecting information,
constructing a prototype, assessing usability and making refinements. This process
takes place parallely with the form and report design process.

11.3.1 DELIVERABLES AND OUTCOMES
Creation of design specifications is the result of system interface and dialogue
design. Design specifications contain four sections:

 Narrative.

 Sample Design.

 Testing and usability assessment.

 Dialogue Sequence.

11.4 Designing Interfaces
In this section we will discuss the designing of interface layouts, providing
guidelines for structuring and controlling data entry fields, providing feedback,
and designing online help.

11.4.1 DESIGNING LAYOUTS
Standard formats similar to paper-based forms and reports should be used for
designing computerized forms, used for reporting information Screen navigation
on data entry screens should be left-to-right, and top-to-bottom as on paper forms.

When designing layouts, flexibility and consistency are primary design goals.
Users should be able to move freely between fields. Data should not be
permanently saved until the user explicitly requests for it. Each key and command
should be assigned to one function.

11.4.2 STRUCTURING DATA ENTRY

We should follow several guidelines when structuring data entry fields on a form.
Some of them are:

 Entry: Never require data that are already online or that can be computed.

 Defaults: Always provide default values when appropriate.

 Units: Make clear the type of data units requested for entry.

 Replacement: Use character replacement when appropriate.

 Captioning: Always place a caption adjacent to fields.

 Format: Provide formatting examples.

 Justify: Automatically justify data entries.

 Help: Provide context-sensitive help when appropriate.

 System Analysis and Design

100

11.4.3 CONTROLLING DATA INPUT

One objective of interface design is to reduce data entry errors. The role of a
systems analyst is to anticipate user errors and design features in the system’s
interfaces to avoid, detect, and correct data entry mistakes.

Some types of data entry errors are:

 Appending – adding additional characters to a field.

 Truncating – losing characters from a field.

 Transcripting – entering invalid data onto a field.

 Transposing – reversing the sequence of one or more characters in a field.

The following techniques are used by system designers to detect errors:

 Class or Composition – test to ensure that data are of proper tpe.

 Combinations – test to see if the value combinations of two or more data
fields are appropriate.

 Expected Values – test to see if the data are as expected.

 Missing Data – test for existence of data items in all fields of a record.

 Pictures – test to assure that data conform to a standard format.

 Range – test to assure data are within a proper range of values.

 Reasonableness – test to assure data are reasonable for situation.

 Self-checking Digits – test to see where an extra digit is added to a numeric
field after its value is derived using a standard formula.

 Size – test for too few or too many characters.

 Values – test to make sure values come from a set of standard values.

11.4.4 PROVIDING FEEDBACK

While interacting with friends one expects feedback (response) from them in the
form of say a nod and response to questions and comments. In the similar way
when designing system interfaces, providing appropriate feedback is an easy
way to make a user’s interaction more enjoyable. System feedback consists of
three types:

a. Status Information: Keeps users informed of what is going on in system.
Displaying status information is especially important if the operation takes
longer than a second or two.

b. Prompting Cues: Best to keep as specific as possible.

c. Error and Warning Messages: Messages should be specific and free of error
codes and jargon. The user should be guided towards a result rather than
scolded. Use terms familiar to the user. Consistency in format and placement
of messages would be essential.

11.5 Designing Dialogues

Dialogue is the sequence in which information is displayed to and obtained from a
user. One Primary design guideline is consistency in the sequence of actions,
keystrokes, and terminology. Designing dialogues is a three-step process:

 Designing the dialogue sequence.

 Building a prototype.

 Assessing usability.

 System Design

101

11.5.1 DESIGNING THE DIALOGUE SEQUENCE

The first step is defining the sequence. In other words, it is necessary to have a
clear understanding of the user, task, and technological and environmental
characteristics. After defining the sequence, transform the sequence into a formal
dialogue specification. The method for designing and representing dialogues is
dialogue diagramming. Dialogue diagrams have only one symbol, a box with
three sections; each box represents one display within a dialogue. The three
sections of the box are as follows:

1. Top: Unique display reference number used by other displays for referencing
dialogue.

2. Middle: Contains the name or description of the display.

3. Bottom: Contains display reference numbers that can be accessed from the
current display.

Figure 13: General Dialogue Diagram

Figure 14: Dialogue Diagram for Customer Information System

 System Analysis and Design

102

12. COUPLING AND COHESION
Coupling refers to the degree of dependency among subsystems. It implies that the
dependence between two subsystems is such that modifying one will have a strong
impact on the other or one uses the services of the other or classes in one
subsystem make use of objectives defined in the other.

Subsystems are strongly coupled to one another if there is a high degree of
dependence between them. Subsystems should be loosely coupled if the impact of
errors or changes in one subsystem is localized and has minimal effect on the rest
of the system.

Cohesion refers to the strength of dependencies within a subsystem. Subsystems
should be highly cohesive. All classes within the subsystem should have a single
purpose.

The main goal of design (from a low-level perspective) is to minimize coupling
and maximize cohesion. Coupling is the level of interdependency between a
method and the environment (other methods, objects and classes), while cohesion
is the level of uniformity of the method goal. While coupling needs a low-level
perspective, cohesion needs a higher point of view. All patterns tend to reach these
two objectives.

Coupling measures the strength of the relationships between modules. The
modules should be loosely coupled i.e., independent, and interacting as little as
possible. The looser the coupling, the easier it is to adapt the design.

Cohesion means each module should have one role. All parts of a module should
contribute to this one role. It should not be made up of unrelated operations.

12.1 Types of Coupling

Following are the different types of couplings:

1. Normal Coupling: One module calls another with no parameter passing nor
return values (i.e., no data communication), for example, clear Screen.

2. Data Coupling: Data is passed between modules. It can be achieved via
parameter passing and/or return values.

3. Stamp Coupling: Unnecessary data passed between modules. For example,
whole personnel record sent to calc-age module when only the date of birth is
needed. Makes the called module do more than it needs to. Makes it less
reusable in programs with different record structures.

4. Control Coupling: One module passes a piece of information intended to
control the internal logic of another which may be data or a flag.

5. Common (Global) Coupling: Very undesirable. Communication would be
via shared or global data. Suppose modules A, B and C each access some
global data. Module A reads it and then invokes B, which alters it
incorrectly. Later, C reads it, attempts to process it, fails, and the program
crashes. Apparent cause is module C, actual cause is module B.

6. Content (Pathological) Coupling: The highest and worst degree of
coupling, occurring when either one module makes use of data or control
information held within another module, or one module branches into the
middle of another.

 System Design

103

12.2 Types of Cohesion
1. Functional Cohesion: This type of cohesion is considered the best. All the

module’s elements are necessary for the single, specific task Hence, a module
contains all elements required for the task.

2. Sequential Cohesion: The elements are related by sequence. The output
from one is the input for some other.

3. Communicational Cohesion: All of the elements in a module operate on the
same input data or produce the same output data.

4. Procedural Cohesion: The elements make up a single control sequence;
usually occurs if flowcharting has been used as a design technique.

5. Temporal Cohesion: The elements are all executed at the same time (for
example, initialization or close down).

6. Logical Cohesion: The elements perform a set of logically related tasks (for
example, different types of error handling).

7. Coincidental Cohesion: The weakest type of cohesion. No significant
relationship between the elements of a module; they are simply bundled
together by coincidence producing “scatterbrained” modules.

12.3 Features of a Good Design
Well-designed systems have:

 Modularity.

 Loose coupling between modules.

 High cohesion within modules.

In good systems, a module may be more easily:

 Tested, maintained, understood, and documented.

 Re-used in other systems/programs.

 Replaced by a more efficient implementation.

In addition, different modules can be developed, and tested in parallel with other
modules by a team of software engineers, thus saving development time.

SUMMARY

 The objectives of information systems design are to provide specifications of
the system blueprint, that is, the features of the system, which can then be
translated into software for use in the organization. These specifications,
called the logical system design, include the details of output, input files,
database interaction, controls and procedures. Physical construction, which
follows logical design, produces software, files and a working system.

 Other design objectives include ensuring that the system supports the
activities of the business, meeting end-user requirements, engineering the
system to be user-friendly, and providing detailed software specifications. All
design features should conform to information systems standards established
for the organization.

 When specifying for institutional systems, analysts design data flows, data
stores, processes, procedures and controls. They also describe the roles of all
the people who will be involved with the new system, such as end-users,
computer operators and support personnel. System procedures often explain
these individuals’ roles. Analysts are also responsible for designing output,
input and database interactions.

 System Analysis and Design

104

 Both the end-users and systems analysts share responsibility under the end-
user method of development. To reduce risks to the organization, it is
important to download data, avoid user data entry, follow design standards,
document the system, and review all design specifications.

 System flowchart describes the data flow for a data processing system. It
provides a logical diagram of how the system operates. It represents the flow
of documents, and the operations performed in data processing system. It also
reflects the relationship between inputs, processing and outputs.

 Structured flow diagrams allow graphical representations of structured
programs. Statement sequences are specified vertically, selection is specified
by horizontal choices, and repetition is specified by a repeat indicator.
Structured Flow Chart is used as tool for Software Design and Documentation.

 Normalization is the process of converting complex data structures into
simple, stable data structures. Denormalization is the process of splitting or
combining normalized relations into physical tables based on affinity of use
of rows and fields. It optimizes certain operations at the expense of others.

 File organization is a technique for physically arranging the records of a file.
Three families of file organization are used in most file management
environments. Those families are sequential file organization, indexed file
organization and hashed file organization.

 In sequential file organization, the rows in the file are stored in sequence
according to a primary key value. In indexed file organization, the rows are
stored either sequentially or non-sequentially and an index is created that
allows software to locate individual rows. Index is a table used to determine
the location of rows in a file that satisfy some condition. In the hashed file
organization, the address for each row is determined using an algorithm,
which converts a primary key value into a row address.

Chapter IV

System Testing and
Implementation
After reading this chapter, you will be conversant with:

 System Verification

 System Validation

 Software Testing

 Installing a System

 Training and Training Methods

 Conversions

 Post-Implementation Review

 System Audit

 System Analysis and Design

106

It is necessary that a software system meets specifications and also runs correctly.
This would satisfy the processes of verification and validation. Verification is the
process of determining if a system meets the conditions set forth at the beginning.
Validation is the process of evaluating a system to determine whether it satisfies
the specified requirements.

Today, there is an unprecedented growth in the development and use of automated
tools and software aids for testing. One such tool is the functional tester, which
determines whether the hardware is operating up to a minimal standard. It is a
computer program that controls the complete hardware configuration and verifies
that it is functional. For example, it can test computer memory by performing
read/write tests, and it tests each of the peripheral device individually.

The functional tester is of great value when minute hardware problems are
disguised as software bugs. For example, hardware faults are usually repeatable,
whereas software bugs are generally erratic. Problems arise when the delicate
interaction between hardware and software cause a hardware problem to appear as
an erratic software bug. A functional tester determines immediately that the
problem is in the hardware. This saves considerable time during testing.

Another software aid is the debug monitor. It is a computer program that regulates
and modifies the application software that is being tested. It can also control the
execution of functional tests and automatically patch or modify the application
program being tested. The use of these tools will increase as systems grow in size
and complexity and as the verification and insurance of reliable software become
increasingly important.

1. SYSTEM VERIFICATION
There are three prominent means of minimizing the risks associated with the use of
technology. They are: system verification, testing and maintenance. Every aspect
of a computer system – hardware, communications and software, should be
verified and thoroughly tested before the system is used for accomplishing an
event. After successful testing, systems will need regular maintenance to ensure
that they will perform effectively and also to enhance their working lives with
addition of enhanced features.

The importance of technology in the working of a system will determine the
degree of rigor applied to verifying, testing and maintaining the technology. For
instance, a system to be used for a crucial electoral function, such as an electronic
voting system, needs high degree of rigor. And for such a system, it is appropriate
to employ an independent testing authority to perform system verification tests.
For less important systems, system verification could be conducted in-house.
System verification tests could include:

 Testing of hardware under conditions simulating expected real-life
conditions.

 Testing of software to ensure that appropriate standards are followed and that
the software performs its intended functions, including audits of code.

 Ensuring system documentation is adequate and complete.

 Ensuring data communications systems conform to appropriate standards and
perform effectively.

 Verifying that systems are capable of performing under expected normal
conditions and possible abnormal conditions.

 Ensuring appropriate security measures are in place and that they conform to
appropriate standards.

 Ensuring that appropriate quality assurance measures are in place.

 System Testing and Implementation

107

2. SYSTEM VALIDATION
Validation refers to the process of using software in a real-time environment in
order to find errors. Validation of a computerized system means a documented
verification that a specific computerized system performs according to its
specifications. It means finding out whether a system performs its expected duties,
and then this performance is documented.

There are many benefits of system validation which are given below:

 Compliance with regulatory requirements.

 Minimized risk of malfunction.

 Reduction in the cost of continuous operation.

 Increased knowledge of processes through improved system knowledge.

 Greater trust in the computerized system.

The feedback from the validation phase is analyzed. Changes are made in the
software accordingly to deal with errors and failures that are uncovered. Validation
may continue for several months. During this phase, the failures that have occurred
are noted and the software is changed accordingly.

3. SOFTWARE TESTING
The testing of large and complex systems is a highly difficult and expensive
activity whose importance in software development and maintenance cannot be
underestimated.

Software testing is taken up after writing the source code. In software testing, a
system or application is operated under controlled conditions and results are
evaluated. The controlled conditions should include both normal and abnormal
conditions. Even though experienced programmers take great care to write the
source code which logically finds solution to the problem at hand, there is no
guarantee that the source code, when executed by the system gives the correct
result. Therefore, it is necessary to test the source code with sample data so as to
be satisfied that the stated objectives have been met. Software testing is the
process of executing a software system to determine whether it matches its
specifications and executes in its intended environment. It can also be stated as the
process of identifying defects, where a defect is any variance between actual and
expected results. Testing commonly means executing software and finding errors.
The process of software testing is used to identify the correctness, completeness
and quality of developed computer software. There are a number of different
testing approaches used to accomplish this, and they range from the most informal
ad hoc testing to formally specified and controlled methods such as automated
testing. Software testing is a very important step before the software project is
released to the customer. Testing uncovers a number of errors are (logical errors,
semantic errors, and run time errors). The uncovered errors are corrected before
the product is delivered to the customer. When errors are discovered, they are
eliminated through a process called debugging.

Testing performs a very critical role in ensuring quality assurance and thereby the
reliability of software. Testing is the phase where the errors from all the previous
phases must be detected. During testing, the program to be tested is executed with
a set of test cases and the output of the program is evaluated to determine if the
program is performing on expected lines. Customer satisfaction is very important
to increase the customer base and win their faith. Therefore, programmers working
for a software development company must execute the program before it is
delivered to the customer with the sole intention of unravelling and removing all
the errors. If the task of software testing is conducted systematically with the help
of test cases designed using disciplined techniques, then there is a high probability
of finding a large number of errors. It is necessary for software engineers to
condition their minds psychologically before undertaking the testing phase.

 System Analysis and Design

108

This is because software engineers, however experienced they may be, should not
have preconceived notions regarding the ‘correctness’ of software that they have
built through analytical thinking and logical mind.

Testing rules as given by Glen Myers can very well serve as testing objectives;
they are given below:

 Testing is a process of executing a program with the intent of finding an error.

 A good test case is one that has a high probability of finding an as-yet-
undiscovered error.

 A successful test is one that uncovers an as-yet-undiscovered error.

The above mentioned objectives when applied successfully, will uncover errors in
the software. In addition, testing also brings to light the fact that the software
functions appear to be working according to specification. It is necessary that to
meet the above objectives, data collected must be reliable.

Software testing is classified according to the manner in which testers perform the
first two phases of the testing process. The scope of the first phase, modeling the
software’s environment, determines whether the tester is doing unit, integration, or
system testing. The process of system testing has several steps to validate and
prepare a system for final implementation. The different types of testing are:

i. Unit Testing: This tests individual software components or a collection of
components. Testers define the input domain for the units under
consideration and put aside the rest of the system. Unit testing sometimes
requires the construction of throwaway driver code and stubs and is often
performed in a debugger.

ii. Integration Testing: This tests multiple components that have each received
prior and separate unit testing. In general, the focus is on the subset of the
domain that represents communication between the components.

iii. System Testing: This tests a collection of components that constitutes a
deliverable product. Usually, the entire domain must be considered to satisfy
the criteria for a system test.

iv. Positive Testing: This is making sure that the new programs do process
certain transactions according to specification.

v. Acceptance Testing: This is running the system with live data by the
actual user.

Now, we shall study these tests in detail:

3.1 Unit Testing
Unit Testing is just one of the levels of testing in the entire gamut of testing a
system. It complements integration and system level testing. It should also
complement code reviews and walkthroughs. Unit testing is generally seen as a
“white box” test class. That is, it is biased at looking and evaluating the code as
implemented, rather than evaluating conformance to some set of requirements.

3.1.1 PURPOSE OF UNIT TESTING
Units are the smallest building blocks of software. In a language like C, individual
functions make up the units. Unit testing is the process of validating such small
building blocks of a complex system much before testing an integrated large
module or the system as a whole. Some of the major benefits are:

 Ability to test parts of a project without waiting for the other parts to be
available.

 Achieve parallelism in testing by being able to test and fix problems
simultaneously by many engineers.

 Ability to detect and remove defects at a much less cost compared to testing
at later stages.

 System Testing and Implementation

109

 Ability to take advantage of a number of formal testing techniques available
for unit testing.

 Simplify debugging by limiting to a small unit the possible code areas in
which to search for bugs.

 Ability to test internal conditions that are not easily reached by external
inputs in the larger integrated systems (for example, exception conditions not
easily reached in normal operation).

 Ability to achieve a high level of structural coverage of the code.

 Avoid lengthy compile-build-debug cycles when debugging difficult problems.

3.2 Integration Testing
Integration testing can proceed in a number of different ways, which can be
broadly characterized as top down or bottom up. In top down integration testing,
the high level control routines are tested first, possibly with the middle level
control structures present only as stubs. Subprogram stubs are incomplete
subprograms which are only present to allow the higher level control routines to be
tested. Thus, a menu driven program may have the major menu options initially
only present as stubs, which merely announce that they have been successfully
called, in order to allow the high level menu driver to be tested.

Top down testing can proceed in a depth-first or a breadth-first manner. For
depth-first integration, each module is tested in increasing detail, replacing more
and more levels of detail with actual code rather than stubs. Alternatively breadth-
first would proceed by refining all the modules at the same level of control
throughout the application. In practice a combination of the two techniques would
be used. At the initial stages all the modules might be only partly functional,
possibly being implemented only to deal with non-erroneous data. These would be
tested in breadth-first manner, but over a period of time each would be replaced
with successive refinements which were closer to the full functionality. This
allows depth-first testing of a module to be performed simultaneously with
breadth-first testing of all the modules.

The other major category of integration testing is bottom up integration testing
where an individual module is tested from a group of test modules connected
together. Once the individual modules have been tested, they are then
combined into a collection of modules, known as builds, which are then tested
by a second test harness. This process can continue until the build consists of
the entire application.

In practice, a combination of top-down and bottom-up testing is used. In a large
software project being developed by a number of sub-teams, or a smaller project
where different modules were being built by individuals, the sub-teams or
individuals would conduct bottom-up testing of the modules which they were
constructing before releasing them to an integration team which would assemble
them together for top-down testing.

3.3 System Testing
The term System Testing can be used in a number of ways. In a general sense, the
term ‘system testing’ refers to the testing of the system in artificial conditions to
ensure that it performs as expected and as required. System testing is the type of
black-box testing that is based on overall requirements specifications. It does not
require the knowledge of the inner design of the code or logic. It attempts to
discover defects that are properties of the entire system rather than of its individual
components. System testing is conducted by taking into account the complete and
integrated system so as to evaluate whether the system is compliant with its
prestated requirements. It covers all the parts of a system.

System testing is used specifically to test the behaviors and bugs that manifest the
entire system as distinct from properties attributable to components. System testing
examines performance, throughput, security, recovery, resource loss, transaction

 System Analysis and Design

110

synchronization etc. Since this testing takes the integrated view of the entire
system, it is performed after the system successfully completes integration testing
and also after the integration of software with any hardware applications.

System testing can be used to assess the following characteristics of a system:

 Assignment and proper handling of interrupt priorities.

 Correct handling of the processing of each interrupt.

 Testing whether the performance of each interrupt-handling procedure is
based on requirements.

 Testing whether the arrival of high volume of interrupts at critical times
creates problems in function or performance.

In the system testing stage, the functional and the performance requirements of the
system are checked. System test is the final validation step, and is performed once
the whole system is developed. Before undertaking comprehensive system testing,
we test the system in parts, according to a defined integration test strategy. The
objective of a systematic test strategy during development is to detect design
failures as early as possible so as to arrive at the system test phase with a mature,
well-functioning system.

Therefore, the individual modules are first tested in isolation in order to detect any
defects in their implementations at the earliest. This is the unit test stage. Many
white-box and black-box methods exist for the selection of unit tests. Knowing
that the single modules work well in isolation is not enough because, we want to
test the interactions between them: we merge modules into progressively larger
subsystems and select tests to detect possible problems in their interfaces and
communications. In this process, there are two key considerations: how to select
an effective set of test cases, and how to progressively combine modules in
subsystems. Integration testing is mostly addressed with reference to the second
issue. Systematic application of top-down, bottom-up, and several other mixed
strategies is traditionally recommended, as opposed to chaotic, all-at-once,
big-bang testing.

Validation testing is a concern which overlaps with integration testing. Ensuring
that the application fulfils its specification is a major criterion for the construction
of an integration test. Validation testing also overlaps to a large extent with
system testing, where the application is tested with respect to its typical working
environment. Consequently, for many processes, no clear division between
validation and system testing can be made. Specific tests which can be performed
in either one or both stages include the following:

 Regression testing: Where the new version of the software is tested along
with the previous versions to ensure that the required features of the previous
version are compatible with the new version.

 Recovery testing: Where the software is deliberately interrupted in a number
of ways, for example, taking its hard disc off line or even turning the
computer off, to ensure that the appropriate techniques for restoring any lost
data will function.

 Security testing: Where unauthorised attempts to operate the software, or
parts of it, are undertaken. It might also include attempts to obtain access to
data, or harm the software installation or even the system software. As with
all types of security, it is recognised that someone sufficiently determined
will be able to obtain unauthorised access and the best that can be achieved is
to make this process as difficult as possible.

 Stress testing: Where abnormal demands are made upon the software by
increasing the rate at which it is asked to accept data, or the rate at which it is
asked to produce information. More complex tests may attempt to create very
large data sets or cause the software to make excessive demands on the
operating system.

 System Testing and Implementation

111

 Performance testing: Where the performance requirements, if any, are
checked. These may include the size of the software when installed, the
amount of main memory and/or secondary storage it requires and the
demands made of the operating system when running within normal limits or
the response time.

 Usability testing: Even if usability prototypes have been tested along with the
application being constructed, a validation test of the finished product will
always be required.

 Alpha and beta testing: An initial release, the alpha release, might be made
to select users who would be expected to report bugs and other detailed
observations back to the production team. Once the application has passed
through the alpha phase, a beta release, possibly incorporating changes
necessitated by the alpha phase, can be made to a larger more representative
set of users, before the final release is made to all users.

The final process would be the audit of software where the complete software
project is checked to ensure that it meets production requirements. This ensures
that all required documentation has been produced in the correct format and is of
acceptable quality. The purpose of this review is: to assure the quality of the
production process and also the product, and secondly to ensure that all is in order
before the initial project construction phase concludes and the maintenance phase
commences. A formal hand over from the development team at the end of the audit
will mark the transition between the two phases.

3.4 Acceptance Testing
The specified conditions for user acceptance testing are:

i. Planning for User Acceptance Testing: In this activity the analyst and the
user agree on the conditions for the test. Many of these conditions may be
derived from the test plan. Other points of agreement include the test
schedule, the test duration and the persons designated for the test. The start
and termination dates for the test should also be specified in advance.

ii. Prepare Test Data for Transaction Path Testing: This activity develops
the data required for testing every condition and transaction to be introduced
into the system. The path of each transaction from origin to destination is
carefully tested for reliable results. The test verifies that the test data are
virtually comparable with real-time data used after conversion.

iii. Plan User Training: User training is designed to prepare the user for testing
and converting the system. User involvement and training take place in
parallel with programming for three reasons:

 The system group has time available to spend on training while the
programs are being written.

 Initiating a user training program gives the systems group a clearer
image of the users interest in the new system.

 A trained user participates more effectively in systems testing.

For user training, preparation of a checklist is useful which includes the provisions
for developing training materials and other documents to complete the training
activity. In effect, the checklist calls for a commitment of personnel, facilities, and
efforts for implementing the candidate system.

 System Analysis and Design

112

The training plan is followed by preparation of the user training manual and other
text materials. Facility requirements and the necessary hardware are specified and
documented. A common procedure is to train supervisors and department heads
who in turn train their staff. The reasons are:

i. User supervisors are knowledgeable about the capabilities of their staff and
the overall operation.

ii. Staff members usually respond more favorably and accept instructions better
from supervisors than from outsiders.

iii. Familiarity of users with their particular problems (bugs) makes them better
candidates for handling user training than the system analyst. The analyst
gets feedback to ensure that proper training is provided.

iv. Operational systems are generally not cared properly. Every system requires
periodic evaluation after implementation.

The second phase of testing which is test selection, determines what type of testing
is being done. There are two main types:

i. Functional testing requires the selection of test scenarios without regard to
source code structure. Thus, test selection methods and test data adequacy
criteria, must be based on attributes of the specification or operational
environment and not on attributes of the code or data structures. Functional
testing is also called as specification-based testing, behavioral testing, and
black-box testing.

ii. Structural testing requires that inputs be based solely on the structure of the
source code or its data structures. Structural testing is also called code-based
testing and white-box testing.

System testing plays an important role as testing is essential for the success of the
system. System testing makes a logical assumption that if all the parts of the
system are correct, the goal will be successfully achieved. Inadequate testing or
non-testing leads to errors that may not appear apparently in near future. This
creates two problems: (1) the time lag between the cause and the appearance of the
problem (the longer the time interval, the more complicated the problem has
become), and (2) the effect of system errors on files and records within the
systems. A small system error can conceivably explode into a much larger
problem. Early and effective testing in the process results in long-term cost savings
due to reduced number of errors.

Another reason for system testing is its utility as a user-oriented vehicle before
implementation. The best program is worthless if it does not meet user needs.

4. INSTALLING A SYSTEM
The organizational process of changing over from the current information system
to a new one is called “Installation”. During installation process, the current
system is replaced by the new system. Employees who use the current system,
must adapt themselves and start using the new system that is being installed.

Deliverables and outcomes of installation are:

 User guides

 User training plans

 Installation and conversion plan.

Installation approaches are:

 Direct

 Parallel

 Single location (Pilot)

 Phased.

 System Testing and Implementation

113

The details of these approaches are given below:

4.1 Direct Installation
Changing over from the old information system to a new one by turning “OFF” the
old system when the new one is turned on. This installation is shown in the figure
given below.

Figure 1

Advantages

 This may be the only possible approach if new and existing systems cannot
coexist in some form.

 Operating cost is low.

 High interest in making installation a success.

Disadvantages

 Operational errors have direct impact on users and organization.

 It may be too long to restore old system, if necessary.

 Time-consuming, and benefits may be delayed until the whole system is
installed.

4.2 Parallel Installation
Running the old information system and the new one simultaneously until the
management decides that the old system can be turned off. This installation is
shown in figure 2.

Figure 2

Advantages

 New system can be checked against the old system.

 Impact of operational errors is minimized because the old system is also
processing all data.

Disadvantages

 Not all aspects of the new system can be compared to the old system.

 Very expensive due to duplication of effort to run and maintain two systems.

 Can be confusing to users.

 May not be feasible due to costs or system size.

4.3 Single Location Installation (Pilot)
In this method of installation, an information system is installed at one site and is
studied its performance to decide whether the new system should be deployed and
the way of its deployment throughout the organization. This type of installation is
shown in figure 3.

 System Analysis and Design

114

Figure 3

Advantages

 One can gain knowledge about the problems fixed by concentrating on one
site.

 Limits potential harm and costs from system errors or failures to select pilot
sites.

 If the installed system is successful, then it would be easy to convince others
to convert to the new system.

Disadvantages

 Burden on Information System (IS) staff to maintain old and new systems.

 If different sites require data sharing, extra programs need to be written to
“bridge” the two systems.

 Some parts of the organization get benefits earlier than other parts.

 May give the impression that the old system is unreliable and error-prone.

4.4 Phased Installation
The phased installation is changing from the old information system to the new
one incrementally, starting with one or a few functional components and then
gradually extending the installation to cover the whole new system. This
installation is shown in figure 4.

Figure 4

Advantages

 It would also make it possible to undertake system development in a phased
manner.

 Limits potential harm and costs from system errors or failures to certain
business activities/functions.

 Risks spread over time.

 Some benefits can be achieved early.

 Each phrase is small and more manageable.

 System Testing and Implementation

115

Disadvantages

 Old and new systems must be able to work together and share data, which
will likely require extra programming to “bridge” the two systems.

 Conversion is constant and may extend over a long period, causing
frustration and confusion for users.

4.5 Planning Installation
Installation strategy involves converting not only software but also data and
hardware, documentation, work methods, job descriptions, and other aspects of
the system.

One of the special considerations is data conversion. Because existing systems
usually contain data required by the new system, current data must be error-free,
unloaded from the current files, combined with new data and loaded into new files.
New data fields may have to be entered in large quantities so that every record
copied from the current system has all the new fields populated. The total
conversion process can be tedious. This process may require that current system be
shut off while the data are extracted so that updates to old data, which would
contaminate the extract process, can not occur.

Another consideration is business cycle of organization. Most organizations
face heavy workloads at particular times of year and relatively light loads at
other times.

Planning for installation may begin as soon as the analysis of the present system of
an organization is completed. Some installation activities must be done after
software installation can occur. The project leader is responsible for anticipating
all installation tasks and assigns responsibility for each to different analysts.

5. TRAINING AND TRAINING METHODS
Well-designed and technically elegant systems may succeed or fail because of the
way they are operated and used. The quality of training received by the personnel
involved with the system in various capacities helps or hinders, and may even
prevent, the successful implementation of an information system. Those who will
be associated with or affected by the system must know in detail what their roles
will be, how they can use the system, and what the system will or will not do.
Both system operators and users need training.

5.1 Training Systems Operators
Many systems depend on the computer-center personnel, who are responsible
for keeping the equipment running as well as for providing the necessary support
service. Their training must ensure that they are able to handle all possible
operations, both routine and extraordinary. Operator training must also involve
the data entry personnel.

As part of their training, operators should be given both a troubleshooting list that
identifies possible problems and remedies for them, as well as the names and
telephone numbers of individuals to contact when unexpected or unusual
problems arise.

Training also involves familiarization with run procedures, which involves working
through the sequence of activities needed to use a new system on an ongoing
basis. These procedures allow the computer operators to become familiar with the
actions they need to take, and when these actions must occur. In addition, they find
out how long applications will run under normal conditions. This information is
important both to enable users to plan work activities and to identify systems
that run longer or shorter than expected – a sign that typically indicates problems
with the run.

 System Analysis and Design

116

5.2 User Training

User training may involve familiarizing with the usage of equipment particularly
in the case where, say, a microcomputer is in use and the individual involved is
both the operator and user. In these cases, users must be instructed first on how to
operate the equipment. Questions that seem trivial to the analyst, such as how to
turn the terminal “ON” how to insert a diskette into a microcomputer, or when it is
safe to turn “OFF” equipment without the danger of data loss may seem out of the
blue for new users who are not familiar with computers.

User training must also instruct individuals in troubleshooting the system,
determining whether a problem that arises is caused by the equipment or software
or by something they have done in using the system. Including a troubleshooting
guide in systems documentation will provide a useful reference long after the
training period is over. The time to prevent the frustration is during training.

Much user training deals with the operation of the system itself. Training in data
coding emphasizes the methods to be followed in capturing data from
transactions or preparing data needed for decision support activities.

Data-handling activities that receive much attention in user training are adding
data (how to store new transactions), editing data (how to change previously
stored data), formulating inquiries (finding specific records or getting responses to
questions), and deleting records of data. The bulk of systems use involves this set
of activities; so, it follows that most training time will be devoted to this area.

From time to time, users will have to prepare disks, load paper into printers, or
change ribbons on printers. No training program is complete without some time
devoted to systems maintenance activities. If a microcomputer or data entry
system will use disks, users should be instructed in formatting and testing disks.
They should also actually perform ribbon changes, equipment cleaning, and other
routine maintenance. It is not enough to simply include this information in
a manual, even though that is essential for later reference.

There are two aspects to user training:

 Familiarization with the processing system itself (that is, the equipment used
for data entry or processing).

 Training in using the application (that is, the software that accepts the data,
processes it, and produces the results).

Weaknesses in either aspect of training are likely to lead to awkward situations that
produce user frustration, errors, or both. Good documentation, although essential,
does not replace training. There is no substitute for hands-on operation of the
system while learning its use.

5.3 Training Methods
The training of operators and users can be achieved in several different ways.
Training activities may take place at vendor locations; or at rented facilities. The
methods and content of the training often vary depending on the source and
location of the training.

5.3.1 VENDOR AND IN-SERVICE TRAINING

Often the best source of training on equipment is the vendor supplying the
equipment. Most vendors offer extensive educational programs as part of their
services either for a fee or without any charges. The courses, for instance offered
by experienced trainers and sales personnel, cover all aspects of using the
equipment, from how to turn it on and off, to the storage and removal of data, to
handling malfunctions. This training is hands-on; so, the participants actually
use the system in the presence of the trainers. If questions arise, they can quickly
be answered.

 System Testing and Implementation

117

If a special software such as a teleprocessing package or database management
system is being installed, sending personnel to off-site short-term courses and
providing in-depth training is preferable to in-service training. These courses,
which are generally provided for a fee, are presented to personnel from many
organizations that are acquiring or using the same system. The benefit of sharing
questions, problems, and experiences with persons from other companies is
substantial. The personal contacts made during the sessions frequently last for
years, with the continual sharing of information benefiting both parties.

5.3.2 IN-HOUSE TRAINING
The advantage of offering on-site training on the usage of the system is that the
instruction can be tailored to the needs of the organization where it is being offered
and proper focus can be given on special procedures used in that setting, and the
organization’s plans for growth, and any problems that may arise can be tackled
in a practical way. Often, the vendors or training companies negotiate fees and
charges that are more economical and that enable the organization to involve
more personnel in the training program than is possible when travel is required.

There are also disadvantages. The mere fact that employees are in their own
surroundings is a distraction, since telephone calls and emergencies can disrupt
training sessions. Moreover, when outside firms come on-site, they may present
courses that emphasize general concepts but that lack sufficient hands-on training.
The training coordinator must recognize this possibility and deal with it in
advance to ensure that the course content will meet operating needs.

In-house training can also be offered through specially purchased instructional
materials. There is no substitute for hands-on experience. Training manuals are
acceptable for familiarization, but the experiences of actually using the
equipment, making and correcting mistakes, and encountering unexpected
situations are the best and most lasting.

Training manuals generally take one or two approaches. Some have the user work
through different activities step by step. The other common approach is to create a
case-study example that includes all frequently encountered situations that the
system is able to handle and that the users should be able to handle. Then, the
users must use the system to handle the actual situations; that is, enter data as
required, process the data, and prepare reports. If the system is inquiry-oriented,
the case study should require the users to pose and receive responses to inquiries.
Sample data and individual transactions are included, so individuals use the
system and receive immediate feedback about the correctness of their actions. If the
results they produce do not match those provided in the training guide, the users
will know that mistakes were made.

During training, systems personnel should be alert to comments made by users
or to problems that users may encounter. Although human factors are difficult to
test some problems may not occur until inexperienced users are directly
interacting with the system. Despite testing, awkward keying requirements to
enter data, unexpected transactions, or unusual ways of preparing transactions
may still arise during training. The trainer must to involve systems personnel
when problems in the design are found, while assisting users who are reluctant to
change from their old ways to the new methods. Of course, the trainer must first
be certain that the new methods are necessary and do represent an improvement
over current methods.

6. CONVERSION
Conversion involves moving over from one system to another. After conversion,
a newly tested system is put to operation without causing costs, risks and
personnel dissatisfaction to escalate. The conversion from one system to another
involves (i) creating computer-compatible files, (ii) Training the operating staff,
and (iii) installing terminals and hardware. It should be kept in mind that the
conversion process should not disturb the normal operations of the entire
organization. There may arise many problems during conversion process in the
form of inadequate training of the employees, technical breakdown of the system,

 System Analysis and Design

118

damage to data files etc. The steps that arise before the culmination of conversion
process are as follows:

i. The user feels an urge to go for conversion due to additional tasks.

ii. The user expresses his desire for conversion before the analyst and the
analyst conducts a study for preparing a proposal.

iii. The proposal contains general specifications of software and hardware and
also a vendor is selected and a date is set for conversion.

iv. The vendor or the project team undertakes the installation of the project
developed according to the user’s specification.

v. Inspite of delays or other impediments, the installation of new system
happens with very little involvement of user.

vi. The training of employees is undertaken to reduce their resistance to the new
system.

Given below is the list of activities that are part of the conversion process:

i. Conversion begins with a review of the project plan, the system test
documentation, and the implementation plan. The people involved are the
user, the project team, programmers and operators.

ii. The conversion part of the implementation plan is finalized and approved.

iii. Files are converted.

iv. Parallel processing between the existing and the new systems is initiated.

v. Results of computer runs and operations for the new system are logged on a
special form.

vi. There would be no need to run the old system in parallel with the new one if
there are no problems with the new system. The results emanating from the
operation of the new system are recorded as documents for future reference.

vii. The conversion process is complete with the new system coming into formal
operational stage. At last, plans are drawn up for post-implementation review.

7. POST-IMPLEMENTATION REVIEW
A post-implementation review measures the system’s performance against
predefined requirements. Unlike system testing, which determines the system
failures a post-implementation review determines how well the system continues
to meet performance specifications after the design and conversation are complete.
It also provides information to determine whether major redesign is necessary.

Post-implementation review is the evaluation of a system in terms of the extent to
which the system accomplishes stated objectives and the actual project costs
exceeding initial estimates. It is usually the review of major problems that need
converting and those that surfaced during the implementation phase. The primary
responsibility for initiating the review lies with the user organization, which
assigns the special staff for this purpose.

7.1 Request for Review
The initiating study begins with the review team, which gathers and reviews
requests for evaluation. It also files discrepancy notices after the system has been
accepted. Unexpected change in the system that affects the user or system
performance is a primary factor that prompts system review. Once a request is
filed, the user is asked how well the system is functioning to specifications or how
well the measured benefits have been realized. Suggestions regarding changes and
improvements are also sought. This phase sets the stage for a formal
post-implementation review.

 System Testing and Implementation

119

7.2 A Review Plan
The review team prepares a formal review plan around the objectives of the
review, the type of evaluation to be carried out and the time schedule required. An
overall plan covers the following areas:

 Administration Plan: It is to review area objectives, operating costs, actual
operating performance and benefits.

 Personnel Requirements Plan: It is to review performance objectives and
training performance till date.

 Hardware Plan: It is to Review performance specifications.

 Documentation Review Plan: It is to review the system development effort.

Once drafted, the review should be verified and approved by the requester or the
end-user. The overall plan is shown in figure 5.

Figure 5

The details of all the plans are given below:

7.2.1 ADMINISTRATIVE PLAN
The review group investigates the effect of the operational system on the
administrative procedures of the user. The following activities are reviewed:

 User Objectives: This is an extremely critical area since it is possible that
other time either the system fails to meet the user’s initial objectives or the
user objectives change as a reflection of changes in the organizational
objectives. The results of the evaluation are documented for future reference.

 Operating Costs and Benefits: Under the administrative plan, the cost
structure of the system is closely reviewed. This includes a review of all costs
and savings, a review and update of the non-cost benefits of the system and a
current budget designed to manipulate the costs and savings of the system.

7.2.2 PERSONAL REQUIREMENT PLAN
This plan evaluates all activities involving system personnel and the staff as they
deal directly with the system. The emphasis is on productivity, morale and job
satisfaction.

After the plan is developed, the review group evaluates the following:

 Personnel Performance Objectives Compared with Current Performance
Levels: Turnover, tardiness, and absenteeism are also evaluated. The results
are documented and made available to the maintenance group for follow-up.

 Training Performance: Through testing, interviews and other data gathering
techniques, the review group attempts to answer questions about the
adequacy of the training materials.

 System Analysis and Design

120

7.2.3 HARDWARE PLAN
The hardware of the new system is also reviewed, including terminals, CRT
screens, software programs, the and the communication network. The primary
target is the comparison of current performance specifications with design
specifications. The outcome of the evaluation indicates any differences between
expectations and realized results. It also points to any necessary modifications to
be made.

7.2.4 DOCUMENTATION REVIEW PLAN
The reason for developing a documentation review plan is to evaluate the accuracy
and completeness of the documentation complied to date and its conformity with
pre-established documentation standards. Irregularities prompt action where
changes in documentation would improve the format and content.

8. SYSTEM AUDIT
System Audit is also called Process Audit. It can be conducted for any activity,
based on a specific document such as operating procedure, work instruction,
training manual, etc.

Information Systems (IS) performs specific audits of computer applications and of
information technology infrastructure and engages in the review of controls around
new systems design and implementation. Information Systems assists the
management to ensure that key system security controls are in place and to
facilitate universal system security standards. In addition, through partnerships
with other information system specialists from research institutions, IS ensures the
adequacy of application controls supporting key business processes.

A software system audit consists of the following:

a. An overall view of the system documentation and an assessment of the
quality of data files and databases. It also includes system maintainability,
reliability and efficiency.

b. Functional information gathered on all the programs in the system to
determine how well they do the job. Each program is assigned a preliminary
ranking value.

c. A detailed program audit which considers the ranking value, mean time
between failures, and size of the maintenance backlog.

Following are the steps involved in software modification:

a. Program rewrites which include logic simplification, documentation updates
and error correction.

b. System level update which completes system level documentation and brings
upto date data flow diagrams or system flowcharts and cross reference
programs.

c. Reaudit of low ranking programs to make sure that the errors have been
corrected.

The planned test of any system ought to include a thorough auditing technique and
introduce control elements unique to the system. The Data Processing (DP) auditor
should be involved in most phases of the system life cycle, especially system
testing. If auditing is done after installing the system then the cost escalates and it
would then not be wise to revert back and modify the system in order to
incorporate adequate controls. Therefore, audit controls must be built during the
phase of system design and tested. Then, the results and recommendations must be
submitted to the system team in charge of the project. The user department should
participate in reviewing the control specifications for the system to ensure that
adequate control has been provided.

For testing programs, test data must include transactions that are specifically
designed to violate control procedures incorporated in the program as well as valid
transactions to test their acceptance by the system tested.

 System Testing and Implementation

121

SUMMARY
 Testing is the last chance to detect and correct errors before the system is

installed. Test data may be artificial or live. In either case they should
provide all combinations of values or formats to test all logic and transaction
path subordinates.

 Verification is the process of determining if a system meets the conditions set
forth at the beginning. Validation is the process of evaluating a system to
determine whether it satisfies the specified requirements.

 The different types of testing are unit testing, integration testing, system
testing, positive testing and acceptance testing.

 Unit testing is the process of validating such small building blocks of a
complex system much before testing an integrated large module or the
system as a whole.

 Functional testing requires the selection of test scenarios without regard to
source code structure.

 Structural testing requires that inputs be based solely on the structure of the
source code or its data structures.

 The different trends in testing are installation, training and so on.

 The organizational process of changing over from the current information
system to a new one is called “Installation”. Installation approaches are
Direct, Parallel, Single location (Pilot), and Phased.

 The quality of training received by the personnel involved with the system in
various capacities helps or hinders, and may even prevent, the successful
implementation of an information system.

 As part of their training, operators should be given both a troubleshooting
list that identifies possible problems and remedies for them, as well as the
names and telephone numbers of individuals to contact when unexpected or
unusual problems arise.

 User training may involve equipment use, particularly in the case where, say,
a microcomputer is in use and the individual involved is both the operator
and user. In these cases, users must be instructed first how to operate the
equipment.

 Training methods are of two types – Vendor and In-Service Training, and
In-House Training.

 A post-implementation review measures the system’s performance against
predefined requirements.

 System audit can be conducted for any activity, based on a specific document
such as operating procedure, work instruction, training manual, etc.

Chapter V

Object-Oriented System
Development Life Cycle
After reading this chapter, you will be conversant with:

 Software Development Process

 Object-Oriented Systems Development

 Object-Oriented Analysis

 Object-Oriented Design

 Prototyping

 Component-Based Development

 Incremental Testing

 Reusability

 Object-Oriented Methodologies

 Unified Approach

 Modelling based on the Unified Modelling Language

 Object-Oriented System Development Life Cycle

123

Object-oriented approaches are seeking to resolve some of the problems of
tranditional structured analysis and design. The Objects model in Object-oriented
System Development (OOSD) provides a more realistic representation, which an
end-user can more readily understand.

OOSD seeks to identify the objects in a problem to understand the structural and
behavioral modularity and properties of each object and to recognize objects
which are members of a common class and to share modularity, behavior, and
properties, in a single consistent abstract model. In requirements analysis, this
model identifies the required objects, classes, functions, behavior, and properties
of the problem.

In design, this model facilitates the framing of architecture for software
components with a smooth transition towards coding. The model is developed and
viewed through graphic and textual representations which provide convenience in
communication.

OOSD formally defines the properties of objects, describing the system as an
object. The system is then refined into its component objects. Classes are
methodically identified by generating them from objects in the system. A
particularly thorough verification procedure establishes that the system is correctly
implemented and achieves the required properties. Objects are treated uniformly,
including the system object. By performing the same essential activities in
analysis, preliminary design, and detailed design, an unusually consistent model is
built, which would represent the real world very closely. This model can then be
tested early and is easy to modify and re-use.

OOSD can be applied in a variety of development models including evolutionary,
spiral, waterfall and prototyping.

1. SOFTWARE DEVELOPMENT PROCESS
Software development process is used to develop computer software. It may be
an ad hoc process devised by the team for one project, but the term often refers to
a standardized, documented methodology which has been used before on similar
projects or one which is being used traditionally within an organization.

Software development process incorporates change, refinement, transformation or
additions to the existing product. Within the process, it is possible to replace one
sub-process with a new one, as long as the new sub-process has the same interface
as the old one, to allow it to fit into the process as a whole. With this method of
change, it is possible to adopt the new process. For example, the object-oriented
approach provides a set of rules for describing inheritance and specialization in a
consistent way when a sub-process changes the behavior of its parent process.

The process can be divided into small, and interacting phases known as
sub-processes. The sub-processes must be defined in such a way that they are
clearly understood to allow each activity to be performed as independently of other
subprocesses as possible. Each subprocess must have the following:

 A description in terms of how it works.

 Specification of the input required for the process.

 Specification of the output to be produced.

The software development process also can be divided into smaller, interacting
sub-processes. It can be viewed as a series of transformations, where the output of
one transformation becomes the input of the subsequent transformation. Let us
study three types of transformations:

 Transformation 1 (analysis) translates the users’ needs into system
requirements and responsibilities. The usage of the system can provide
insights into the users’ requirements. For example, one use of the system
might be analyzing an incentive payroll system, that needs to be included in
the system requirements.

 System Analysis and Design

124

 Transformation 2 (design) begins with a problem statement and ends with a
detailed design that can be transformed into an operational system. This
transformation includes the bulk of the software development activity,
including the definition of how to build the software, its development, and
its testing. It also includes the design descriptions, the program and the
testing materials.

 Transformation 3 (implementation) refines the detailed design into system
deployment that will satisfy the users' needs. This takes into account the
equipment, procedures, people, etc. It represents installing the software
product within its operational environment. For example, for a new
compensation method a program is written, new forms are put to use, and
new reports are generated.

The waterfall approach to software development process starts with deciding what
is to be done (what is the problem). Once the requirements have been determined,
how to accomplish them must be decided. This is followed by actually doing the
required things. Then, the results must be tested to see if the users’ requirements
are satisfied.

The waterfall approach to software development process is illustrated in figure 1.

Figure 1: Water Software Development Process

In the real world, the problems are not always well-defined and that is why the
waterfall model has limited utility. In this model one step invariably follows the
other. For example, if a company has experience in building accounting systems,
then building another such system based on the existing design is best managed
with the waterfall model. Where there is uncertainty regarding what is required or
how it can be built, the waterfall model would not be of much use. This model
assumes that the requirements are known before the design begins, but one may
need experience with the product before the requirements can be fully understood.
It also assumes that the requirements will remain static over the development cycle
and that a product delivered months after it was specified will meet all the needs at
its delivery time.

Finally, even when there is a clear specification, it assumes that sufficient design
knowledge would be available to build the product. The waterfall model is the
best way to manage a project with a well-understood product, especially very
large projects.

Its failure can be traced to its inability to accommodate special needs of the
software and its inappropriateness for resolving partially understood issues; it also
neither emphasizes nor encourages software reusability.

 Object-Oriented System Development Life Cycle

125

After the system is installed in the real world, the environment frequently changes,
altering the accuracy of the original problem statement and consequently
generating revised software requirements. This can complicate the software
development process even more. For example, a new class of employees or
another shift of workers may be added or the standard workweek or the piece rate
changed. Any such changes also change the environment, requiring changes in the
programs. As each such request is processed, system and programming changes
make the process increasingly complex, since each request must be considered
with regard to the original statement of needs as modified by other requests.

2. OBJECT-ORIENTED SYSTEMS DEVELOPMENT
The world which we live in consists of objects of different kinds. The objects are
found in nature, in the products made by human beings and also in businesses.
An object represents an entity in real life and it may also be an abstraction.
For instance, when we consider an airline reservation system, the objects in this
system are aeroplanes, icons on the screen or a complete screen through which an
operator issues tickets. Other examples of objects include customers in a bank,
cats, atoms, molecules, students, balls of a string, bureaucrats etc. Smaller objects
may be combined to form larger objects. Objects that we see around us can be
described by means of their attributes and operations. Attributes are the
characteristics of an object. For instance attributes of a cat are its color, size and
weight. The operations that a cat performs are that it can catch mice, eat, make
peculiar sounds, lick the owner etc.

Another point of interest is that an object can belong to or is a member of a larger
class of objects. For instance, chair is an object that belongs to a larger class of
objects called furniture. The attributes of furniture class are cost, dimensions,
location, weight, color etc. Since chair is a member of this class, it inherits all
attributes that are defined for the class. The example of class and an object is
shown below.

Class: Furniture
Cost
Weight
Dimensions
Color
Location

Object: Chair
Cost
Weight
Dimensions
Color
Location

The object-oriented world that we live in has been extended to the design and
construction of software in an abstract manner. In an object model, the entire data
is stored as attributes of some object and these attributes are maneuvered by
operations. Objects are permitted to use each others operations and it is only
through operations that an object can manipulate another object. Object modeling
is nothing but finding objects, their attributes and their operations, and putting
them together in an object model. These objects work together to perform the tasks
that are required. To perform the task, objects communicate with one another by
sending messages. For instance, a client object requests the execution of a function
(known as method) from a server object by sending it a message. Objects can
function either as clients or servers according to the situation. An object is in the
role of a client when it invokes another object irrespective of whether the objects
are located in the same memory space or on different computers. Messages are like
external forces that affect the state of the object which receives them. The sending
of messages between objects is dependent on the architecture of the system that is
being designed and the location of the objects that communicate with one another.

 System Analysis and Design

126

The functions of an object can be stated as follows:

 Storing or memorization of data or references and providing lookup.

 Performing some function on its own such as any computation.

 Invoking other objects to perform some action by sending them messages.

Inheritance

An object can inherit features from another object. It can also have additional
features or, if needed, replace some of the features of another object. Consider an
example of inheritance. We shall consider two objects: ITEM-OFFERS and
VOLUME-OFFERS. Both of these objects inherit the features of another object
OFFERS and also have their own additional properties and methods. This is
represented below:

In the above given example, both ITEM-OFFERS and VOLUME-OFFERS will
have the properties PRODUCER and TIME-AVAILABLE. ITEM-OFFERS also
has the additional properties QUANTITY and PRICE/ITEM while VOLUME-
OFFERS has the properties of WEIGHT and PRICE/KG. In addition, both the
objects ITEM-OFFERS and VOLUME-OFFERS have a method, Compute-value
but the computation performed by both these methods is different.

Polymorphism

Polymorphism is related to the concept of inheritance. It means the ability of one
construct to take many forms. In object-oriented programming, it refers to the
ability of a message to change its effect depending on the instance of object called.
In the above given example, a message ‘compute-value’ addressed to OFFERS
will select the appropriate method depending on the type of offer being considered.
In addition, adding a new specialized object with a new specification of ‘compute-
value’ will mean that the message ‘compute-value’ will select that method
if addressed to an instance of the new class.

Data Abstraction

We have understood the concept of an object in our discussion. Let us consider an
example of a real-life object, car. Now, a person who is interested in driving a car
need not have the knowledge of internal combustion engine or technical details of
its control system. It is enough for the driver to know the external components of a
car such as the steering wheel and the horn.

In other words, the term abstraction refers to focusing on the essential, inherent
aspects of an entity without worrying about its secondary aspects. It allows a user
to put his/her attention on only those aspects that are essential for completing the
task. Thus, only critical elements of the system are captured.

OFFERS
PRODUCER:

TIME-AVAILABLE:
Add-offer():

Delete-offer();

ITEM-OFFERS
QUANTITY:
PRICE/ITEM:

Compute-value;

VOLUME-OFFERS
WEIGHT:

PRICE/KG;
Compute-value;

 Object-Oriented System Development Life Cycle

127

Encapsulation

By encapsulation we mean data hiding in which the external aspects of an object
are separated from being accessed by other objects. Thus, the interface of an
abstraction is separated from its implementation.

For instance, a Stack abstraction provides methods like push(), pop(), isEmpty(),
isFull() etc. The Stack can be implemented as a singly linked list, a doubly linked
list, an array, or a binary search tree. This feature is called encapsulation. It hides
the details of the implementation of an object.

An object encapsulates both data and the operation, and all functionality is defined
by operations. We can construct classes of objects through this important
characteristic, leading to reusable classes and objects. Reusability has become the
hallmark of modern software engineering due to the adoption of object-oriented
paradigm in software development organizations. Another advantage is that the
software components which come out through this paradigm bring with them the
design characteristics such as functional independence and information hiding that
is associated with high-quality software. The structure of object-oriented software
is inherently decoupled. One more advantage of object-oriented software systems
is that it is easier to adopt and scale because one can construct large systems by
putting together reusable subsystems of other systems.

To hide the details of a class, its data or implementation can be declared in its
private part so that it remains hidden from other classes and they cannot access it.
Another advantage of encapsulation is that it would become possible to delay the
resolution of the details till the design stage is reached and it would also be
possible to have modular approach in the design of the code.

In the present times, the object-oriented paradigm has become the standard
method in the software development process. Particularly, object-oriented
languages like C++ or Java have become the de facto standards in the
programming world. In the analysis and design phases of software development,
object-oriented modeling approaches are becoming more and more acceptable to
the software industry as standards. In this chapter we shall study various aspects
of object-oriented software engineering such as analysis, design, modeling and
object-oriented metrics.

2.1 Object-oriented Software Development Life Cycle (SDLC)
The object-oriented Software Development Life Cycle (SDLC) consists of three
macro processes:

i. Object-oriented analysis,

ii. Object-oriented design, and

iii. Object-oriented implementation.

Figure 2 depicts the object-oriented Systems Development Approach.

Figure 2: Object-Oriented Systems Development Approach

 System Analysis and Design

128

The use-case model can be employed throughout most activities of software
development. By following the life cycle model of Jacobson, Ericsson etc., one
can produce designs that are traceable across requirements, analysis,
implementation, and testing. The main advantage is that all design decisions
can be traced back directly to user requirements. Usage scenarios can become
test scenarios.

Object-oriented system development includes the following activities:

 Object-oriented analysis – use case driven.

 Object-oriented design.

 Prototyping.

 Component-based development.

 Incremental testing.

The characteristic of Object-oriented software development is different objects
cooperate with one another. It advocates incremental development.

3. OBJECT-ORIENTED ANALYSIS

3.1 Definition
“Object-Oriented Analysis (OOA) is a method of analysis that examines
requirements from the perspective of the classes and objects found in the
vocabulary of the problem domain”.

Object-Oriented Analysis (OOA) is concerned with developing software
engineering requirements and identifying classes and their relationship with other
classes in the problem domain. To understand the system requirements, one needs
to identify the users or the actors. In object-oriented as well as traditional
development, scenarios are used to help analysts understand requirements. These
scenarios may not be fully documented. Ivar Jacobson came up with the concept of
the use case, a name given by him for a scenario, to describe the user-computer
system interaction. It became a primary element in system development. The
object-oriented programming community has adopted use cases quiet extensively.
Scenarios help in examining who does what in the interactions among objects and
what role they play; that is, their interrelationships. This intersection among
objects’ roles to achieve a given goal is called collaboration. The scenarios
represent only one possible example of the collaboration. All aspects of the
collaboration and all potential actions have several different scenarios which may
be required, some showing usual behaviors, others showing situations involving
unusual behavior or exceptions.

A use case is a typical interaction between a user and a system that captures users’
goals and needs. Expressing these high-level processes and interactions with
customers in a scenario and analyzing it, is referred to as use-case modeling. The
use-case model represents the users’ view of the system or users’ needs.

The physical objects in the system also provide important information to the
objects in the object-oriented systems. The objects could be individuals,
organizations, machines, units of information, pictures, or anything related to the
application and makes sense in the context of the real-world system.
While developing the model, objects emerge that help establish a workable system.
It is necessary to work iteratively between use-case and object models.

For example, objects in a flight reservation system might include an airplane, an
airline flight, an icon on a screen, or even a full screen with which a travel agent
interacts. OOA specifies the structure and the behavior of the object which
comprise the requirements of that object. Different types of models are required to
specify the requirements of the objects. The information or object model contains

 Object-Oriented System Development Life Cycle

129

the definition of objects in the system, which includes: the object name, the object
attributes and the object’s relationship with other objects. The behavior or state
model describes the behavior of the object in terms of the state in which the object
exists, the transitions allowed between object and the events that cause objects to
change states. These models can be created and maintained using CASE tools that
support representation of objects and object behavior.

Documentation is another important activity which does not end with
object-oriented analysis but should be carried out throughout the system
development process.

The results of analysis are requirement specifications which clearly describe the
external behavior of the software, without any prejudgement about how the
software will produce this exact behavior.

3.2 OO Analysis vs Structured Analysis
 OO technique provides a more consistent approach to system modelling.

 OO view more closely reflects the real world reflecting the way of thinking
of human beings in terms of things which possess both attributes and
behaviors.

 OO provides reuse possibility from the class hierarchy views of the system.

 OO analysis is able to model the user interface to a system.

3.3 Benefits of OOA
 Maintainability through simplified mapping to the real world, which

provides for less analysis effort, less complexity in system design and easier
verification by the user.

 Reusability of the analysis artifacts which saves time and costs depending on
the analysis method and programming language.

 Productivity gains through direct mapping to features of Object-Oriented
Programming Languages.

3.4 Shortcomings of OOA
 OO analysis techniques are still in the process of research and debate.

 The mixing of analysis and design methods is a problem with OO techniques.

4. OBJECT-ORIENTED DESIGN
“Object-oriented design is the construction of software systems as structured
collections of abstract data type implementations, or “classes”.

The goal of Object-Oriented Design (OOD) is to design the classes identified
during the analysis phase and the user interface. During this phase, additional
objects and classes that support implementation of the requirements are identified.
The result of preliminary design is a description independent of language and
technology. Detailed design results in the development of code. Many OOD
methods have been described since the late 1980s. The most popular OOD
methods include Booch, Buhr, Wasserman and the HOOD developed by the
European Space Agency.

OOD builds on the products developed during Object-Oriented Analysis (OOA)
by refining candidate objects into classes, defining message protocols for all
objects, defining data structures and procedures, and mapping these into an Object-
Oriented Programming Language (OOPL). Several OOD methods describe these
operations on objects, although none is an accepted industry standard.

 System Analysis and Design

130

The term Object-Oriented Design (OOD) means different things to different
people. For example, OOD has been used to imply such things as:

 The design of individual objects, and/or the design of individual methods
contained in those objects,

 The design of an inheritance (specialization) hierarchy of objects,

 The design of a library of reusable objects, and

 The process of specifying and coding of an entire object-oriented application.

In general terms, analysis can mean listening to customers, making some notes and
sketches, thinking about both the problems and potential solutions, and even
constructing a few software prototypes. Design can mean the code-level design of
an individual object, the development of an inheritance (specialization) hierarchy,
or the informal definition and implementation of a software product (e.g., identify
all the objects, create instances of the objects, and have the instances send
messages to each other).

Hence, object-oriented design and object-oriented analysis are distinct discipline,
which can be intertwined. Object-oriented development is highly incremental.

A design method in which a system is modelled as a collection of cooperating
objects and individual objects is treated as an instance of a class within a class
hierarchy. Four stages can be identified. They are:

 Identify the classes and objects,

 Identify their semantics,

 Identify their relationships, and

 Specify class and object interfaces and implementation.

Object-oriented design is one of the stages of object-oriented programming. First,
the object model based on objects and their relationships is built and then the
model is iterated and refined:

 Design and refine classes.

 Design and refine attributes.

 Design and refine methods.

 Design and refine structures.

 Design and refine associations.

A few guidelines to use in object-oriented design are:

 Reuse, rather than build, a new class. Know the existing classes.

 Design a large number of simple classes, rather than a small number of
complex classes.

 Design methods.

The life cycle model of Jacobson et al., produces designs that are traceable across
requirements, analyses, implementation and testing.

Problems associated with traditional structured design are as follows:

 It fails to take the evolutionary nature of software systems into accounts.

 Often the data structure aspect is neglected.

 Working top-down does not promote reusability.

Benefits of OO design are as follows:

 Information hidding.

 Weak coupling.

 Object-Oriented System Development Life Cycle

131

 Strong cohesion.

 Exensibility.

Shortcomings OOD are as follows:

 Difficulty in identifying a class.

 Blurred boundaries between design and both analysis and implemetation.

 Variable degrees of OO support in existing CASE tools.

 Elaborate and complex notations.

5. PROTOTYPING
A prototype is a working model that is functionally equivalent to a component of
the product.

Although object-oriented analysis and design describe system features, it is
important to construct a prototype of some of the key system components as soon
as the products are selected. A prototype is a version of a software product
developed in the early stages of the product’s life cycle for specific, experimental
purposes. A prototype enables to fully understand how easy or difficult it will be to
implement some of the features of the system. It also can give users a chance to
comment on the usability and usefulness of the user interface design and strike a
balance between the software tools selected, the functional specification, and the
user needs. Prototyping can also help in defining use cases, which makes use-case
modelling much easier. The main idea is to build a prototype with uses-case
modelling to design systems that users like and need. Companies may produce
prototype products to display certain features or simply get a working model
before refining other parts of the design. Prototyping can help resolve conflicts
over requirements. When users actually use different prototypes they may change
their preferences.

The Prototyping Model was developed on the assumption that it is often difficult
to know all the requirements at the beginning of a project. Typically, users know
many of the objectives that they wish to address with a system, but they do not
know all the nuances of the data, nor do they know the details of the system
features and capabilities. The Prototyping Model allows for these conditions,
and offers a development approach that yields results without first requiring all
information at the same time or in the beginning. When using the Prototyping
Model, the developer builds a simplified version of the proposed system and
presents it to the customer for consideration as part of the development process.
The customer in turn provides feedback to the developer, who goes back to
refine the system requirements to incorporate the additional information.
Generally, the prototype code is not the final version. It is subsequently refined,
modified and updated, resulting in the development of new programs, once
requirements are identified.

5.1 Type of Prototype

Prototypes can be of various types. The following categories are some of the
commonly accepted and represent very distinct ways of viewing a prototype, each
having its own strengths:

 A horizontal prototype is a simulation of the interface but contains no
functionality. This has the advantage of being very quick to implement,
providing a good overall feel of the system, and allowing users to evaluate
the interface on the basis of their normal, expected perception of the system.

 System Analysis and Design

132

 A vertical prototype is a subset of the system features with complete
functionality. The principal advantage of this method is that the few
implemented functions can be tested in great depth. In practice, prototypes
are a hybrid between horizontal and vertical. The major portions of the
interface are established such that the user can get the feel of the system, and
risky features are prototyped with much more functionality.

 An analysis prototype is an aid for exploring the problem domain. This class
of prototype is used to inform the user and demonstrate the proof of a concept
It is not used as the basis of development and is discarded when it has served
its purpose. The final product will use the concepts exposed by the prototype,
not its code.

 A domain prototype is an aid for the incremental development of the ultimate
software solution. It is often used as a tool for the staged delivery of
subsystems to the users or other members of the development team. It
demonstrates the feasibility of the implementation and eventually will evolve
into a deliverable product.

The typical time required to produce a prototype is anywhere from a few days to
several weeks, depending on the type and function of the prototype. Prototyping
should involve representations from all user groups that will be affected by the
project, especially the end-users and management members to ascertain that the
general structure of the prototype meets the requirements established for the
overall design. The purpose of this review is threefold:

i. To demonstrate that the prototype has been developed according to the
specification and that the final specification is according to the requirements.

ii. To collect information about errors or other problems in the system, such as
user interface problems that need to be addressed in the intermediate
prototype stage.

iii. To provide an understanding of the role and importance of technology to
everyone connected with the project.

The evaluation can be performed easily if the necessary supporting data is readily
available. Testing considerations must be incorporated into the design and
sub-sequent implementation of the system.

Prototyping is useful at any stage of the development. As key features are
specified, prototyping those features usually results in modifications to the
specification and even bring to light the need for additional features or highlight
problems that are not obvious until the prototype is built.

6. COMPONENT-BASED DEVELOPMENT
A software component is something that can be deployed as a black box. It has an
external specification, which is independent of its internal mechanisms.

Component-Based Development offers a new approach to the design, construction,
implementation and evolution of software applications. Software applications are
assembled from components from a variety of sources; the components themselves
may be written in several different programming languages and run on several
different platforms. A new generation of CASE tools is beginning to support
component-based development.

Two basic ideas underlie Component-Based Development (CBD):

 The application development can be improved significantly if applications
can be assembled quickly from prefabricated software components.

 An increasingly large collection of interpretable software components could
be made available to developers in both general and specialist catalogs.

 Object-Oriented System Development Life Cycle

133

These two ideas move application development from a craft activity to an
industrial process fit to meet the needs of modem, highly dynamic, competitive,
global businesses.

A CBD developer can assemble components to construct a complete software
system. Components themselves may be constructed from other components and
so on down to the level of pre-built components or old-fashioned code written in
a language such as C or COBOL. Visual tools or actual code can be used to put
together components. Although it is practical to do simple applications by wiring
components together as in Digitalk’s Smalltalk PARTS or IBM’s Visual Age,
putting together a practical application still poses some challenges. All these are
invisible to end-users. The impact to users will come from faster product
development cycles, increased flexibility and improved customization features.
CBD will allow independently developed applications to work together and do so
more efficiently and with less development effort.

CBD can be regarded as an extension to conventional software development and
management. In other words, some component requirements are satisfied through
CBD while some other requirements are satisfied using other (conventional)
techniques. Conventional development is then a special case of CBD, which lacks
some of the techniques and opportunities (and of course the benefits) that
characterize full CBD. We then get a spread of possibilities, from conventional
development at one end, and extreme componentization at the other end. One of
the key questions to be addressed by a designer is the degree of componentization
in a particular situation.

Software components are the functional units of a program – the building blocks
offering a collection of reusable services. A software component can request a
service from another component or deliver its own services on request. The
delivery of services is independent, which means that components work together
to accomplish a task. Components may depend on one another without interfering
with each other. Each component is unaware of the context or inner workings of
the other components i.e., the object-oriented concept addresses analysis, design,
and programming, whereas component-based development is concerned with the
implementation and system integration aspects of software development.

Figure 3, shows the traditional manufacturing process of bicycles, with different
components sourced from different places

Figure 3: Traditional Manufacturing Process

As shown in figure 3, the manufacture of bicycles illustrates some of the principal
ideas of component-based software development.

7. INCREMENTAL TESTING
Quality assurance is an important part of the software development process. In this
context, however, we want to focus on performance testing rather than quality
testing. Performance testing is really about benchmarking. It is to be noted that
benchmarks are constructed with regard to performance of a running system.
These benchmarks should be based on the performance requirements. Having a
solid set of benchmarks facilities tracking progress over time and see where we

 System Analysis and Design

134

stand with regard to requirements. Meeting or exceeding the performance
requirements should be part of the shipping criteria for the final product.

Testing should be a planned and documented activity. Especially in incremental
and iterative development processes the repeatability of tests is very important.

7.1 Testing Types
Following are the different testing types.

 Unit Testing: Test methods within each object.

 Integration Testing: Test collaborations between objects.

 System Testing: Test the entire system as a collection of objects.

 Acceptance Testing: Test for standards and customer satisfaction.

Debugging should actually take place continuously during the development
cycle. In particular, it should be done in both:

a. Design Phase: This involves detecting and removing logical errors. It is
accomplished by “tracing” the algorithm (penciling through each step); this is
also called performing a “walkthrough”.

b. Coding Phase: This involves removing syntax errors which are mistakes in
the spelling and grammar of the particular programming language.

After coding, testing and debugging is also needed to catch faults that might have
slipped through:

a. Testing involves using simple but complete test data specifically chosen to
expose possible errors (“bugs”).

b. Debugging is the process of removing these errors.

8. REUSABILITY
Reusability is “the degree to which a software module or other work product can
be used in more than one computing program or software system”. A major benefit
of object-oriented system development is reusability. For an object to be really
reusable, a large effort must be spent designing it. To deliver a reusable object, the
development team must have the up-front time to design reusability into the object.

The reuse strategy can be based on the following:

 Information hiding (encapsulation).

 Conformance to naming standards.

 Creation and administration of an object repository.

 Encouragement by strategic management of reuse as opposed to constant
redevelopment.

 Establishing targets for a percentage of the objects in the project to be reused.

The benefits of Reuse are:

 Increased reliability,

 Reduced time and cost for development, and

 Improved consistency.

9. OBJECT-ORIENTED METHODOLOGIES
Object-oriented methodology is a set of methods, models and rules for developing
systems. Modelling is the process of describing an existing or proposed system. It
can be used during any phase of the software life cycle. A model is an abstraction
of a phenomenon for the purpose of understanding it. Modelling provides a means
for communicating ideas in an easy to understand and unambiguous form while
also accommodating a system’s complexity.

 Object-Oriented System Development Life Cycle

135

An appropriate lifecycle methodology for OO developments must contain all of
the following components:

 A full lifecycle process for both business and technological issues;

 A full set of concepts and models which are internally self-consistent;

 A collection of rules and guidelines;

 A full description of all deliverables;

 A workable notation;

 Ideally supported by third party drawing tools;

 A set of tried and tested techniques;

 A set of appropriate metrics, standards and test strategies; and

 Identification of organizational roles to be performed by business analysts,
etc., and programmers; etc., and guidelines for project management and
quality assurance.

Some of the important points with regard to the development of object-oriented
methodologies are as follows:

 Booch developed the object-oriented design concept – the Booch method.

 Sally Shaler and Steve Mellor created the concept of recursive design approach.

 Beck and Cunningham produced class-responsibility-collaboration cards.

 Wirfs-Brock, Wilkerson and Wiener came up with responsibility driven design.

 Jim Rumbaugh led a team at the research labs of General Electric to develop
the object modelling technique.

 Peter Coad and ED Yourdon developed the Coad lightweight and
prototype-oriented approach to methods.

 Ivar Jacbson introduced the concept of the use case and Object-Oriented
Software Engineering (OOSE).

Many methodologies are available to choose from for system development. Each
methodology is based on modelling the business problem and implementing the
application in an object-oriented fashion; the differences lie primarily in the
documentation of information and modelling notations and languages. Two people
using the same methodology may produce application designs that look radically
different. This does not necessarily mean that one is right and one is wrong, just
that they are different.

In this, we look at the methodologies and their modelling notations developed by
Rumbaugh, Booch and Jacobson which led to the development of the Unified
Modelling Language (UML). Each method has its advantages. The Rumbaugh
method is well-suited for describing the object model or the static structure of the
system. The Jacobson method is good for producing user-driven analysis models.
The Booch method produces detailed object-oriented design models.

The formal OO Methodology is shown in figure 4:

Figure 4: Formal OO Methodology

 System Analysis and Design

136

The Current OO Methodology is shown in figure 5:

Figure 5: Current OO Methodology

9.1 Rum Baugh’s Object Modelling Technique (OMT)

OMT, presented by Jim Rum Baugh and his co-workers, describes the method for
analysis, design and implementation of a system using an object-oriented
technique. OMT is a fast, and intuitive approach for identifying and modelling all
the objects making up a system. OMT consists of four phases, which can be
performed iteratively:

i. Analysis: Starting from a statement of the problem, the analyst builds
a model of the real-world situation showing its important properties. The
analysis model is a concise, precise abstraction of what the desired system
must do, not how it will be done. The objects in the model should be
application-domain concepts and not computer implementation concepts such
as data structures. A good model can be understood and criticized by
application experts who are not programmers. The analysis model should not
contain any implementation decisions. For example, a Window class in a
workstation windowing system would be described in terms of the attributes
and operations visible to a user.

ii. System Design: The system designer makes high-level decisions about the
overall architecture. During system designing, the target system is organized
into subsystems based on both the analysis structure and the proposed
architecture. The system designer must decide what performance
characteristics to optimize, choose a strategy of attacking the problem, and
make tentative resource allocations. For example, the system designer might
decide that changes to the workstation screen must be fast and smooth even
when windows are moved or erased and choose an appropriate
communications protocol and memory buffering strategy.

iii. Object Design: The object designer builds a design model based on the
analysis model but containing implementation details. The designer adds
details to the design model in accordance with the strategy established during
system design. The focus of object design is the data structures and
algorithms needed to implement each class. The object classes from analysis
are still meaningful, but they are augmented with computer-domain data
structures and algorithms chosen to optimize important performance mea-
sures. Both the application-domain objects and the computer-domain objects
are described using the same object-oriented concepts and notation, although
they exist on different conceptual planes. For example, the Window class
operations are now specified in terms of the underlying hardware and
operating system.

iv. Implementation: The object classes and relationships developed during
object design are finally translated into a particular programming language,
database or hardware implementation. Programming should be a relatively
minor and mechanical part of the development cycle, because all of the hard

 Object-Oriented System Development Life Cycle

137

decisions should be made during design. The target language influences
design decisions to some extent, but the design should not depend on fine
details of a programming language. During implementation, it is important to
follow good software engineering practices so that traceability to the design
is straight forward and the implemented system remains flexible and
extensible. For example, the Window class would be coded in a programming
language using calls to the underlying graphics system on the workstation.

Object-oriented concepts can be applied throughout the system development life
cycle, from analysis through design to implementation. The same classes can be
carried from stage to stage without a change of notation. Although the analysis
view and the implementation view of Window are both correct, they serve different
purposes and represent a different level of abstraction. The object-oriented
concepts of identity, classification, polymorphism and inheritance apply through
the entire development cycle.

The symbols used in this method are shown in figure 6:

Figure 6: Symbols used in OO Paradigm

The Object Modeling Technique provides three sets of concepts which provide
three different views of the system. There is a method which leads to three
models of the system corresponding to these views. The models are initially
defined, and then refined as the phases of the method progress. The three models
are discussed below.

i. The object model describes the static structure of the objects in a system and
their relationships. The object model contains object diagrams. An object
diagram is a graph whose nodes are object classes and whose arcs are
relationships among classes. Each class represents a set of individual objects.
The object diagram of a bank system is shown in figure 7:

Figure 7: Example of a Bank System in OO Model

 System Analysis and Design

138

ii. The dynamic model describes those aspects of a system which are concerned
with time and the sequencing of operations – events that mark changes,
sequences of events, states that define the context for events, and the
organization of events and states. The dynamic model captures control – that
aspect of a system which describes the sequences of operations that occur,
without regard for what the operations do, what they operate on, or how they
are implemented.

 The dynamic model is represented graphically with state diagrams. Each state
diagram shows the state and event sequences permitted in a system for one
class of objects. State diagrams also refer to the other models. Actions in the
state diagrams correspond to functions from the functional model; events in a
state diagram become operations on objects in the object model. The state
diagram for the bank application user interface is shown in figure 8.

Figure 8: State Diagram for the Bank Application

iii. The functional model describes those aspects of a system concerned with

transformations of values – functions, mappings, constraints, and functional
dependencies. The functional model captures what a system does, without
regard for how or when it is done.

 The functional model is represented with data flow diagrams. Data flow
diagrams show the dependencies between values and the computation of
output values from input values and functions. Traditional computing
concepts such as expression trees are examples of functional models.
Functions are invoked as actions in the dynamic model and are shown as
operations on objects in the object model. The Data Flow Diagram of the
ATM system is given below.

Figure 9: DFD of the ATM System

 Object-Oriented System Development Life Cycle

139

9.2 Booch Methodology
The Booch methodology is a widely used object-oriented method that helps to
design the system using the object paradigm. It covers the analysis and design
phases of an object-oriented system. Booch defines a number of symbols to
document almost every design decision. The Booch method consists of the
following diagrams:

 Class diagrams

 Object diagrams

 State transition diagrams

 Module diagrams

 Process diagrams

 Interaction diagrams.

The Booch methodology prescribes.

 A macro development process, and

 A micro development process.

9.2.1 THE MACRO DEVELOPMENT PROCESS
The macro process serves as a controlling framework for the micro process. The
primary concern of the macro process is technical management of the system.
Such management is interested less in the actual object-oriented design than in
how well the project corresponds to the requirements set for it and whether it is
produced on time. In the macro process, the traditional phases of analysis and
design are preserved to a large extent.

The macro development process consists of the following steps:

 Conceptualization – In this, the core requirements of the system are
established. Also, a set of goals are established to develop a prototype for
proving the concept.

 Analysis and development of the model – In this,

 a. The class diagrams are used to describe the roles and responsibilities of
objects in the system.

 b. The object diagram is used to describe the behavior of the system, and
the interaction diagram is used to describe the behavior of the system in
terms of scenarios.

 Designing or Creating the system architecture – In this,

 a. The class diagram is used to decide what classes exist and how they
relate to each other.

 b. Then, object diagram is used to decide what mechanisms are used to
regulate the collaboration among the objects.

 c. Next, module diagram is used to map out where each classes and
objects should be declared.

 d. Finally, the process diagram is used to determine which processor to
be allocated to a process.

 Evolution or implementation – In this step, a stream of software
implementations are produced, each of which is a refinement of the prior one.

 Maintenance – Localized changes to the system are made so as to add new
requirements and eliminate bugs.

9.2.2 THE MICRO DEVELOPMENT PROCESS
The micro process is a description of the day-to-day activities by a single or small
group of software developers. It consists of the following steps:

i. Identify classes and objects.

ii. Identify classes and object Semantics.

iii. Identify classes and object relationships.

iv. Identify classes and object interfaces and implementation.

 System Analysis and Design

140

9.3 Jacobson Methodologies
Jacobson methodologies cover entire life cycle and stress traceability between the
different phases, both forward and backward. At the heart of Jacobson
methodologies is the use-case concept, which evolved with Object Factory for
Software Development. Jacobson methodologies include:

 Object-Oriented Business Engineering (OOBE).

 Object-Oriented Software Engineering (OOSE).

9.3.1 USE CASES
Use cases are scenarios for understanding system requirements. A use case is an
interaction between users and a system. The use-case model captures the goal of
the user and the responsibility of the system to its users. The use case diagram for
the library system is shown below:

Figure 10: Use-Case Diagram for the Library System

In requirements analysis, the use cases are described as one of the following:

 No formal text with no clear flow of events.

 Text, easy to read but with a clear flow of events to follow (this is a
recommended style).

 Formal style using pseudocode.

The use case description must contain the following:

 How and when the use case begins and ends?

 The interaction between the use case and its actors, including when the
interaction occurs and what is exchanged.

 How and when the use case will need data store in the system or will store
data in the system.

 Exceptions to the flow of events.

 How and when the concepts of the problem domain are handled?

 Every single use case should describe one main flow of events. An
exceptional or additional flow of events could be added. The exceptional use
case extends another use case to include the additional one. The use case
model employs extends and uses relationships. The extends relationship is
used when there is one use case that is similar to another use case but does a
bit more. It extends the functionality of the original use case (like a subclass).
The uses relationship reuses common behavior in different use cases.

Use cases could be viewed as concrete or abstract. An abstract use case is not
complete and has no actors that initiate it but is used by another use case. This
inheritance could be used in several levels. Abstract use cases also are the ones
that have uses or extend relationships.

 Object-Oriented System Development Life Cycle

141

9.3.2 OBJECT-ORIENTED SOFTWARE ENGINEERING (OBJECTORY)

Object-oriented Software Engineering (OOSE) is also called as Objectroy. It is a
method of object-oriented development with the specific aim to fit the
development of large, real-time systems. The development process, called use-case
driven development, stresses that use cases are involved in several phases of the
development, including analysis, design, validation and testing. It is shown in
figure 11. The use-case scenario begins with a user of the system initiating
a sequence of interrelated events.

Figure 11: Use-case Development

The system development method based on OOSE is a disciplined process for the

industrialized development of software, based on a use-case driven design. It is an

approach to object-oriented analysis and design that centers on understanding the

ways in which a system actually is used. By organizing the analysis and design

models around sequences of user interaction and actual usage scenarios, the

method produces systems that are both more usable and more robust, adapting

more easily to changing usage.

Objectory is built around different models:

 Use case-model: The use-case model defines the outside (actors) and inside

(use case) of the system’s behavior.

 Domain object model: The objects of the “real” world are mapped into the

domain object model.

 Analysis object model: The analysis object model presents how the source

code (implementation) should be carried out and written.

 Implementation model: The implementation model represents the implementation

of the system.

 Test model: The test model constitutes the test plans, specifications, and

reports.

The maintenance of each model is specified in its associated process. A process is

created when the first development project starts and is terminated when the

developed system is taken out of service.

 System Analysis and Design

142

9.3.3 OBJECT-ORIENTED BUSINESS ENGINEERING
Object-Oriented Business Engineering (OOBE) is object modeling at the
enterprise level. Use cases again are the central vehicle for modeling, providing
traceability throughout the software engineering process.

 Analysis Phase: The analysis phase defines the system to be built in terms of
the problem-domain object model, the requirements model and the analysis
model. The analysis process should not take into account the actual
implementation environment. This reduces complexity and promotes
maintainability over the life of the system, since the description of the system
will be independent of hardware and software requirements. This model
should be developed just enough to form a base of understanding for the
requirements model. The analysis process is iterative but the requirements
and analysis models should be stable before moving on to the subsequent
models. Jacobson suggests that prototyping with a tool might be useful
during this phase to help specify user interfaces.

 Design and Implementation Phases: The implementation environment must
be identified for the design model. This includes factors such as Database
Management System (DBMS), distribution of process, constraints due to the
programming language, available component libraries and incorporation of
graphical user interface tools. It may be possible to identify the
implementation environment concurrently with analysis. The analysis objects
are translated into design objects that fit the current implementation
environment.

 Testing Phase: Finally, Jacobson describes several testing levels and
techniques. The levels include unit testing, integration testing and system
testing.

10. UNIFIED APPROACH
Unified approach is based on the best practices that have proven successful in
systems development and more specifically, the work done by Booch, Rumbaugh,
and Jacobson in their attempt to unify their modelling efforts. The Unified
Approach (UA) establishes a unifying and unitary framework around their works
by utilizing the Unified Modelling Language (UML) to describe, model, and
document the software development process. The main motivation is to combine
the best practices, processes, methodologies and guidelines along with UML
notations and diagrams for better understanding object-oriented concepts. The
unified approach to software development revolves around (but it is not limited to)
the following processes and concepts:

 Use-case driven development.

 Object-oriented analysis.

 Object-oriented design.

 Incremental development and prototyping.

 Continuous testing.

The methods and technology employed include:

 Unified modelling language used for modelling.

 Layered approach.

 Repository for object-oriented system development patterns and frameworks.

 Component-based development.

 Object-Oriented System Development Life Cycle

143

The processes and components of the unified approach are shown in figure 12.

Figure 12: Processes and Components of the Unified Approach

10.1 Object-Oriented Analysis
Analysis is the process of describing the needs and duties of a system so as to
satisfy the users’ requirements. The goal of object-oriented analysis is to first
understand the domain of the problem and the system’s responsibilities by
understanding how the users use or will use the system. This is accomplished by
constructing several models of the system. These models concentrate on describing
what the system does rather than how it does it. Separating the behavior of a
system from the way it is implemented requires viewing the system from the user’s
perspective rather than that of the machine.

OOA Process consists of the following steps:

 Identify the Actors.

 Develop a simple business process model using UML Activity diagram.

 Develop the Use Case.

 Develop interaction diagrams.

 Identify classes.

10.2 Object-Oriented Design
Booch provides the most comprehensive object-oriented design method.
Rumbaugh and Jacobson’s high-level models provide good avenues for getting
started. UA combines these by utilizing Jacobson’s analysis and interaction
diagrams, Booch’s object diagrams and Rumbaugh’s domain models. By
following Jacobsons life cycle model, we can produce designs that are traceable
across the various phases of life cycle viz., requirements, analysis, design, coding
and testing. OOD process consists of,

 Designing classes, their attributes, methods, associations, structures,
protocols, and applying design axioms.

 Designing the Access Layer.

 Designing and prototyping User Interface.

 Conducting User Satisfaction and Usability Tests based on the Usage/Use
Cases.

 Iterating and refining the design.

 System Analysis and Design

144

10.3 Iterative Development and Continuous Testing
We must iterate and reiterate until, we obtain a satisfactory system. Since
testing often uncovers design weaknesses or at least provides additional
information that is needed. While reprototyping and retesting, it is necessary to
learn from each repetition and rework accordingly. This refining cycle is
continued through the development process until one is satisfied with the
results. During this iterative process, the prototype will be incrementally
transformed into the actual application. UA encourages the integration of
testing plans from day one of the project.

11. MODELING BASED ON THE UNIFIED MODELING LANGUAGE
The Unified Modeling Language (UML) was developed with the joint efforts of
leading object technologists Grady Booch, Ivar Jacobson and James Rumbaugh
with contributions from many others. The UML merges the best of the notations
used by the three most popular analysis and design methodologies: Booch’s
methodology, Jacobson’s use case and Rumbaugh’s object modeling technique.
The UML is becoming the universal language for modeling systems; it is intended
to be used to express models of many different kinds and purposes. The UML has
become the standard notation for object-oriented modeling systems. The UA uses
the UML to describe and model the analysis and design phases of system
development (UML) notations.

11.1 The UA Proposed Repository
The idea is to create a repository that allows the maximum reuse of previous
experience and previously defined objects, patterns, frameworks and user
interfaces in an easily accessible manner with a completely available and easily
utilized format. Everything from the original user request to maintenance of the
project as it goes to production should be kept in the repository. The advantage of
repositories is that, the organizations can use the objects of past projects, stored in
the repositories for future projects. For instance, one can select from repository, a
data element, a diagram, various symbols and associated dependents for reuse.

The UA’ s underlying assumption is that, if we design and develop applications
based on previous experience, creating additional applications will require no more
than assembling components from the library. Additionally, applying lessons
learned from the past developmental mistakes to future projects will increase the
quality of the product and reduce the cost and development time. If a new
requirement surfaces, new objects will be designed and stored in the main
repository for future use. Specifications of the software components, describing
the behavior of the component and how it should be used, are registered in the
repository for future reuse by teams of developers.

The repository should be accessible to many people. Furthermore, it should be
relatively easy to search the repository for classes based on their attributes,
methods, or other characteristics. For example, application developers could select
previously built components from the central component repository that match
their business needs and assemble these components into a single application,
customizing where needed.

Tools to fully support a comprehensive repository are not accessible yet, but this
will change quickly and, in the near future, tools would be available to capture all
phases of software development into a repository for reuse.

11.2 The Layered Approach to Software Development
Most systems developed with today’s CASE tools or client-server application
development environments tend to lean towards what is known as two-layered
architecture: interface and data.

In a two-layered system, user interface screens are tied to the data through routines
that sit directly behind the screens; for example, a routine that executes when a

 Object-Oriented System Development Life Cycle

145

button is clicked. With every interface that is created, the business logic needed to
run the screen is re-created. The routines required to access the data must exist
within every screen. Any change to the business logic must be accomplished in
every screen that deals with that portion of the business. This approach results in
objects that are very specialized and cannot be reused easily in other projects.

Figure 13: The Three Layer Approach

A better approach to systems architecture is one that isolates the functions of the
interface from the functions of the business. This approach also isolates the
business from the details of the data access. Using the three-layered approach, one
is able to create objects that represent tangible elements of business that are
completely independent of the way they are represented to the user through the
interface or how they are physically stored (in a database). The three-layered
approach as shown in figure 13, consists of a view of user interface layer a
business layer, and an access layer.

11.2.1 THE BUSINESS LAYER
The business layer contains all the objects that represent the business (both data
and behavior). The business layer is responsible for modeling the objects of the
business and depicting the way they interact to accomplish the business processes.

The business objects should not be responsible for –

 Displaying details: Business objects should have no special knowledge of
how they are being displayed and by whom.

 Data access details: Business objects also should have no special knowledge
of where they come from.

A business model captures the static and dynamic relationships among a collection
of business objects. Static relationships include object associations and
aggregations. Dynamic relationships show how the business objects interact to
perform tasks. Business models incorporate control objects that direct their
processes. Business objects are identified during object-oriented analysis. Use case
can provide a wonderful tool to capture business objects.

11.2.2 THE USER INTERFACE LAYER (VIEW)
The user interface layer consists of objects with which the user interacts as well as
the objects needed to manage or control the interface.

Responsibilities

 Responding to User Interaction: The user interface layer objects must be
designed to translate actions by the user.

 Displaying Business Objects: The user interface layer paints the best
possible picture of the business objects for the user.

The user interface layer’s objects are identified during the object-oriented
design phase.

 System Analysis and Design

146

11.2.3 THE ACCESS LAYER

The access layer contains objects that know how to communicate with the place
where the data actually reside.

Responsibilities

 Translate Request: The access layer must be able to translate any
data-related requests from the business layer into the appropriate protocol for
data access.

 Translate Results: The access layer must also be able to translate the data
retrieved back into the appropriate business objects and pass those objects
back into the business layer.

 Access objects are identified during object-oriented design.

SUMMARY
 In an object-oriented environment, software is a collection of discrete objects

that encapsulate their data and the functionality to model real-world
“objects”. Once objects are defined, one can take it for granted that they will
perform their desired functions and so seal them off in one’s mind like black
boxes. One’s attention as a programmer shifts to what they do rather than
how they do it. The object-oriented life cycle encourages a view of the world
as a system of cooperative and collaborating agents.

 An object orientation produces systems that are easier to evolve, more
flexible, more robust and more reusable than a top-down structure approach.

 In System Development Life Cycle (SDLC), the essence of the software
process is the transformation of users’ needs through the application domain
into a software solution that is executed in the implementation domain. The
concept of the use case, or a set of scenarios, can be a valuable tool for
understanding the users’ needs. The emphasis on the analysis and design
aspects of the software life cycle is intended to promote building high-quality
software (meeting the specifications and being adaptable for change).

 Object-oriented design requires more rigors up front to do things right. One
needs to spend more time on gathering requirements, developing a
requirement model and an analysis model, and then turning them into the
design model. Object-oriented systems development consists of three macro
processes: object-oriented analysis, object-oriented design, and object-
oriented implementation. Object-oriented analysis requires building a use-
case model and interaction diagrams to identify user’s needs and the system’s
classes and their responsibility, then validating and testing the model
documenting each step along the way. Object-oriented design centers around
establishing design classes and their protocol; building class diagrams, user
interfaces and prototypes; testing user satisfaction and usability based on
usage and use software development; furthermore, by following Jacobson’s
life cycle model, one can produce designs that are traceable across
requirements, analysis, design, implementation and testing.

 Component-Based Development (CBD) is an industrialized approach to
software development. Software components are functional units, or building
blocks offering a collection of reusable services. A CBD developer can
assemble components to construct a complete software system. Components
themselves may be constructed from other components and so on down to the
level of pre-built components or old-fashioned code written in a language
such as C, assembler or COBOL.

 Object-Oriented System Development Life Cycle

147

 Reusability is a major benefit of object-oriented system development. It is
also the most difficult promise to deliver. To develop reusable objects, one
must spend time up front to design reusability in the objects.

 Rumbaugh et al. has a strong method for producing object models
(sometimes known as domain object models). Jacobson et al. has a strong
method for producing user-driven requirement and object-oriented analysis
models. Booch has a strong method for producing detailed object-oriented
design models.

 Each method has a weakness, too. While Rumbaugh et al.’s OMT has string
methods for modeling the problem domain, OMT models cannot fully
express the requirements. Jacobson et al. deemphasize object modeling and,
although they cover a fairly wide range of the life cycle, they do not treat
object-oriented design to the same level as Booch who focuses almost
entirely on design, and not analysis.

 Booch and Rambaugh et al. are object centered in their approaches and
focus more on figuring out what are the objects of a system, how are they
related, and how do they collaborate with each other. Jacobson et al. are
more user centered, in that everything in their approach derives from use
cases or usage scenarios.

 The UA is an attempt to combine the best practices, processess and
guidelines along with UML notations and diagrams for better understanding
object-oriented concepts and object-oriented system development. The UA
consists of the following processes: (a) Use case driven development,
(b) Object oriented analysis, (c) Object oriented design, (d) Incremental
development and prototyping, and (e) Continuous testing.

 Furthermore, it utilizes the methods and technologies such as unified
modeling language and layered approach. It promotes repository for all
phases of software development.

 A software engineering methodology consists of a process for organized
development based on a set of techniques. The OMT methodology is based
on the development of a three-part model of the system, which is then refined
and optimized to constitute a design. The object model captures the objects in
the system and their relationships. The dynamic model describes the reaction
of objects in the system to events and the interactions between objects. The
functional model specifies the transformation of object values and constraints
on these transformations. The object modeling technique produces systems
that are more stable with respect to changes in requirements than traditional
function-oriented approaches.

 The purpose of analysis is to understand the problem and the application
domain so that a correct design can be constructed. A good analysis captures
the essential features of the problem without introducing implementation
artifacts that prematurely restrict design decisions.

 The object model shows the static structure of the real world. First,
identify the object classes and then identify associations between objects,
including aggregations. Object attributes and links should be defined,
although minor ones can be deferred. Inheritance should be used to
organize and simplify the class structure. Organize tightly-coupled
classes and associations into modifies.

 System Analysis and Design

148

 The dynamic model shows the behavior of the system – especially
sequencing of interactions. First, prepare scenarios of typical and exceptional
sessions. Then, identify external events between the system and the outside
world. Build a state diagram for each active object showing the patterns of
events it receives and sends, together with actions that it performs. Match
events between state diagrams to verify consistency; the resulting set of state
diagrams consume the dynamic model.

 The functional model shows the functional derivation of values without
regard for when they are computed. First, identity input and output values of
the system as parameters of external events. Then, construct data flow
diagrams to show the computation of each output value from other values and
ultimately input values. Data flow diagrams interact with internal objects that
serve as data stores between iterations.

 Methodologies are never linear. This one is no exception. Any complex
analysis is constructed by iteration on multiple levels. All parts of the model
need not be developed at the same pace. The result of analysis replaces the
original problem statement and serves as the basis for design.

Chapter VI

UML Models
After reading this chapter, you will be conversant with:

 Static and Dynamic Models

 Unified Modeling Language

 The Meta-Model

 Use-Case Diagrams

 Activity Diagrams

 Interaction Diagrams

 Sequence Diagrams

 Collaboration Diagrams

 Class Diagrams

 Object Diagrams

 State Chart Diagrams

 Implementation Diagrams

 Component Diagrams

 Deployment Diagrams

 System Analysis and Design

150

A model is an abstraction of a phenomenon for the purpose of understanding the
system prior to building or modifying it. It is a simplified representation of reality.
Modelling provides a means for communicating ideas in an easy to understand
manner in addition to accommodating a system’s complexity. The characteristics
of simplification and representation are difficult to achieve in the real world since
they frequently contradict each other.

Most modelling techniques used for analysis and design involve graphic languages
which are a set of symbols. These symbols are used according to certain rules of
the methodology for communicating the complex relationships of information
more clearly than descriptive text. The goal of CASE tools is to assist in using
these graphic languages, along with their associated methodologies.

Modelling is used during many of the phases of the SDLC. Objectory is built
around several different models i.e., use-case model, domain object model,
analysis object model, implementation model and test model.

Modelling is an iterative process; as the development of model progresses from
analysis to implementation stage, more details are added but it remains the same.

Models can represent static or dynamic situations. Each representation has different
implications with regard to organization and representation of knowledge.

Developing a model for a software system prior to its construction or renovation is
as essential as having a blueprint for a large building. Good models are essential
for communicating the complexity of a system among project teams and to assure
architectural soundness. As the complexity of systems increase, so does the
importance of good modeling techniques. There are many additional factors of a
project’s success, but having a rigorous modeling language standard is one
essential factor. A modeling language must include:

 Model elements: Fundamental modelling concepts and semantics.

 Notation: Visual rendering of model elements.

 Guidelines: Expression of usage within the trade.

In the face of increasingly complex systems, visualization and modeling become
essential. The Unified Modelling Language (UML) is a well-defined and widely
accepted response to that need. It is the visual modeling language of choice for
building object-oriented and component based systems. The use of visual notation
to represent or model a problem can provide several benefits. Those are clarity,
familiarity, maintenance and simplification.

Turban cites the following advantages of modeling:

 Models make it easier to express complex ideas.

 Models reduce complexity.

 Models enhance and reinforce learning and training.

 The cost of modelling analysis is much lower than the cost of similar
experimentation conducted with a real system.

 Manipulation of model is much easier than manipulating a real system.

Here are a few key ideas regarding modelling:

 A model is rarely correct when constructed for the first time.

 It is necessary to seek the opinion of others.

 It is essential to avoid excess model revisions as they can distort the essence
of the model.

 UML Models

151

1. STATIC AND DYNAMIC MODELS
A static model can be viewed as a snapshot of a system’s parameters at rest or at a
specific point in time. Static models are needed to represent the structural or static
aspect of a system. For example, a customer could have more than one account or
an order could be aggregated from one or more line items. Static models assume
stability and an absence of change in data over time. The UML class diagram is an
example of a static model.

A dynamic model can be viewed as a collection of procedures or behaviours that,
taken together, reflect the behaviour of a system over time. Dynamic relationships
show how the business objects interact to perform tasks. For example, an object
order interacts with another object, inventory to determine the availability of a
given product.

A system can be described by first developing its static model, which is the
structure of its objects and their relationships to each other. Dynamic modelling is
most useful during the design and implementation phases of the system
development. The UML interaction diagrams and activity models are examples of
UML dynamic models.

Static models depicting classes, inheritance relationships and aggregation
relationships are often the first diagrams that are created. Unfortunately, they are
sometimes the only diagrams that are create. In fact, a static emphasis on object
oriented design is inappropriate. Software design is about a dynamic behavior.
Object oriented design is a technique used to separate and encapsulate behaviors.

The interplay that exists between the static and dynamic models is also more
important. A static model cannot be proven accurate without associated dynamic
models. Dynamic models, on the other hand, do not adequately represent
considerations of structure and dependency. Thus, the designer must iterate
between the two kinds of models, in order to converge on an acceptable solution.

2. UNIFIED MODELING LANGUAGE
The Unified Modeling Language (UML) is the industry-standard language for
specifying, visualizing, constructing, and documenting the artifacts of software
systems. It simplifies the complex process of software design, creating
a “blueprint” for construction.

The Unified Modeling Language (UML) is becoming a standardized modeling
notation for expressing object-oriented models and designs. The UML is based on
an intuitive and easy to understand diagrammatic notation. More and more,
software developers are using UML to model their software in the early stages of
software development. Recent research shows that software errors are most likely
to be introduced during the requirement analysis and design stage and these errors
can have a lasting impact on the reliability, cost and safety of a system.
Furthermore, requirement errors are more costly to fix during later stages of the
software lifecycle than during the requirements stage.

A UML model usually includes both static and dynamic aspects so as to
completely model a real application. The UML is a graphical language with sets of
rules and semantics. The rules and semantics of a model are expressed in English,
in a form known as Object Constraint Language (OCL). OCL is a specification
language that uses simple logic for specifying the properties of a system. In
general, the static aspect of a model can be represented by the static diagrams in
UML, such as class diagrams, together with some constraints written in the Object
Constraint Language (OCL); the dynamic aspect of a model can be given by the
UML dynamic diagrams such as state machine diagrams or activity diagrams. We
think that any tool supporting the validation of a UML model should include static
and dynamic validation.

 System Analysis and Design

152

2.1 Benefits of UML
Following are the advantages of UML:

 UML is a ready-to-use and expressive visual modeling language that can be
used to develop and exchange appropriate models.

 UML provides extensibility and specialization mechanisms to extend the core
concepts.

 It is independent of particular programming languages and development
processes.

 Encourages the growth of OO tools market.

 Supports higher-level development concepts.

 Integrates best practices and methodologies.

2.2 Scope of UML

The Unified Modeling Language (UML) is a language for specifying, constructing,
visualizing and documenting the artifacts of a software-intensive system.

It is to be noted that the UML combines the concepts of Booch, OMT and OOSE.
The result is a single, common and widely used modeling language for users of
these and other methods. Second, Unified Modeling Language expands the scope
of existing methods. As an example, the UML authors targeted the modeling of
concurrent, distributed systems to assure that the UML adequately addresses these
domains. Third, the Unified Modeling Language focuses on a standard modeling
language, not a standard process. Although the UML must be applied in the
context of a process, it is our experience that different organizations and problem
domains require different processes.

Therefore, the efforts concentrated first on a common meta model (which unifies
semantics) and second on a common notation (which provides a human
rendering of these semantics). The UML authors promote a development process
that is use-case driven, architecture centric, and iterative and incremental.
The UML specifies a modeling language that incorporates the object-oriented
community’s consensus on core modeling concepts. It allows deviations to be
expressed in terms of its extension mechanisms. The Unified Modeling
Language provides the following:

 Semantics and notation to address a wide variety of contemporary modeling
issues in a direct and economical fashion.

 Semantics to address certain expected future modeling issues, specifically
related to component technology, distributed computing, frameworks and
executability.

 Extensibility mechanisms so that individual projects can extend the meta
model for their application at low cost. We do not want users to directly
change the UML meta model.

 Extensibility mechanisms so that future modeling approaches could be grown
on top of the UML.

 Semantics to facilitate model interchange among a variety of tools.

 Semantics to specify the interface to repositories for the sharing and storage
of model artifacts.

 UML Models

153

2.3 UML Diagrams
At the core of the UML are its nine kinds of modeling diagrams. They are:

i. Class diagrams

ii. Object diagrams

iii. Use case diagrams

iv. Sequence diagrams

v. Collaboration diagrams

vi. Statechart diagrams

vii. Activity diagrams

viii. Component diagrams

ix. Deployment diagrams.

UML diagrams are divided into three categories: four diagrams represent static
application structure, three diagrams represent general types of behavior, and two
diagrams represent different aspects of interactions i.e.,

 Structure diagrams include the Class Diagram, Object Diagram, Component
Diagram and Deployment Diagram.

 Behavior diagrams include the Use Case Diagram (used by some
methodologies during requirements gathering), Activity Diagram, and State
Machine Diagram.

 Interaction diagrams, all derived from the more general Behavior Diagram,
include the Sequence Diagram and Collaboration Diagram.

UML consists of Use Case diagrams which pictorially show a sequence of actions
and represent a functional requirement. A Use Case also contains a textual
description, which describes the preconditions and the main flow. UML uses class
diagrams which show the static structure of the system. Class diagrams define the
class in terms of its attributes and operations, but also show association,
subclassing, and aggregation. Interfaces are used in UML to reduce coupling.
UML also supports division of a system into subsystems called packages, which
constrains the effect of changes and limits the coupling. Deployment diagrams are
used with package diagrams to show the physical relationship among the
components and where they are physically located.

Dynamic behavior is shown in UML by using state diagrams, interaction diagrams,
and activity diagrams. State diagrams describe the behavior of objects in terms of
how they change from one state to another. Interaction diagrams describe how
groups of objects interact. Some common interaction diagrams are sequence
diagrams, which show the order and interaction of a sequential set of steps, and
collaboration diagrams, which show a sequence of messages. An activity diagram
describes parallel processing and shows the flow from one activity to another.

2.4 UML Validation
First, static validation can be used to check whether a model is syntactically valid,
i.e., whether the model satisfies the UML meta-model including the well-formed
rules given by OCL. On the other hand, as the application becomes more
complicated, it is harder for a developer to find whether some state, represented by
an object diagram, is included in the model which (s)he is developing. The second
function for the static validation is that it can help a developer check whether
his/her model includes some related snapshots or not.

After designing a static structure of a model, a developer can specify dynamic
behavior for a class and this kind of behavior can be represented by UML
dynamic diagrams such as state chart diagrams. Dynamic validation is used to
check whether the dynamic aspect of a model satisfies some important properties
such as safety.

 System Analysis and Design

154

There are not many research tools available to support either static or dynamic
validation. One of the reasons most tools do not support model validation is the
lack of formal semantics of UML and OCL.

Generally, research work to support UML model validation usually includes two
steps. First, researchers present a formal semantics for a diagram or language in
which they will work; and then, according to the formal semantics, they either
translate the diagram or language into some language supporting the validation or
use some programming language to execute the diagram or language. One of the
problems in the above tools is that the researchers have not given a proof of
correctness for these tools, although the validation model they assume is the same
as the semantic model.

UML represents a unification of the concepts and notations. The goal is for
UML to become a common language for creating models of object oriented
computer software. UML comprises of two major components: a Meta-model
and a notation.

3. THE META-MODEL

UML is unique in that it has a standard data representation. This representation is
called the Meta model. The meta-model is a description of UML in UML i.e.,
a meta-model is a model of modeling elements. The purpose of the UML
meta-model is to provide a single, common, and definitive statement of the syntax
and semantics of the elements of the UML. The meta-model provides a means to
connect different UML diagrams. The connection between the different diagrams
is very important. The UML attempts to make these couplings more explicit
through defining the underlying model (meta-model) while imposing no
methodology.

The presence of meta-model has made it possible for its developers to agree on
semantics and how those semantics would be best rendered. This is an important
step forward, since it can assure consistency among diagrams. The meta-model
can serve as a means to exchange data between different CASE tools. The
meta-model has made it possible for a team to explore ways to make the
modelling language.

3.1 The Notation

The UML notation is rich and full bodied. It is comprises of two major
subdivisions. The first one is a notation for modeling the static elements of
a design such as classes, attributes and relationships. The second one is a notation
for modeling the dynamic elements of a design such as objects, messages and
finite state machines.

4. USE-CASE DIAGRAMS

 “The Use case diagram is used to identify the primary elements and processes that
form the system. The primary elements are termed as “actors” and the processes
are called “use cases”. The Use case diagram shows which actors interact with
each use case”.

The use case model is based on Jacobson’s use cases with some minor changes to
better match UML’s overall approach. Use Case scenarios are used in process
modelling and analysis of requirements stages of UML. Use Cases are used in the
analysis phase of software development to articulate the high-level requirements of
the system.

 UML Models

155

A Use Case Diagram is a diagram that helps system analys to discover the
requirements of the target system from the user’s perspective. A use case diagram:

 Describes the behaviour of a system from a user’s standpoint.

 Provides functional description of a system and its major processes.

 Provides graphic description of the users of a system and what kind of
interactions to expect within that system.

 Displays the details of the processes that occur within the application area.

A Use case diagram displays the relationship among actors and use cases. Hence,
the basic components of Use Case diagrams are the Actor, the Use Case, and the
Association.

4.1 Actor
An Actor, as mentioned, is a user of the system, and is depicted using a stick
figure. The role of the user is written beneath the icon. Actors are not limited to
humans. If a system communicates with another application, and expects input or
delivers output, then that application can also be considered an actor. In a banking
application, a customer entity represents an actor. Similarly, the person who
provides service at the counter is also an actor. The graphical notation for actor is
given below:

4.2 Use Case
Use case is a collection of possible sequences of interactions between the system
under discussion and its Users (or Actors), relating to a particular goal. The
collection of Use Cases should define all systems’ behavior relevant to the actors
to assure them that their goals will be carried out properly. Any system behavior
that is irrelevant to the actors should not be included in the use cases. These are
represented by ellipses with actions written inside. The graphical notation for use
case is as follows:

4.3 Association
Associations are used to link Actors with Use Cases and indicate that an Actor
participates in the Use Case in some form. Associations are depicted by a line
connecting the Actor and the Use Case. The graphical notation for the association
in use case diagrams is as follows:

The following image shows how these three basic elements work together to form
a use case diagram:

 System Analysis and Design

156

For a banking application it might be: deposit money and withdraw money. The
use case diagram is given below:

it shows the relationships between actors and use cases.

4.4 Communicates
The participation of an actor in a use case is shown by connecting the actor symbol
to the use case symbol by a solid path. The actor is said to ‘communicate’ with the
use case. This is only the relation between actor and use cases.

4.5 Extends
 Extends shows the relationships between use cases. Relationship between use case
A and use case B indicates that an instance of use case B may include (subject to
specific conditions specified in the extension) the behavior specified by A. An
‘extends’ relationship between use cases is shown by a generalization arrow from
the use case providing the extension to the base use case. The arrow is labeled with
the stereotype «extends».

4.6 Uses
A uses relationship from use case A to use case B indicates that an instance of the
use case A will also include the behavior as specified by B. A ‘uses’ relationship
between use cases is shown by a generalization arrow from the use case doing the
use to the use case being used. The arrow is labeled with the stereotype «uses».The
diagram below shows use case for travel agent reserving apartment scenario.

Figure 1 below shows all the relationships between use cases and actors.

Figure 1

5. ACTIVITY DIAGRAMS
The easiest way to visualize an Activity diagram is to think of a flowchart of a
code. The flowchart is used to depict the business logic flow and the events that
cause decisions and actions in the code to take place.

An activity diagram illustrates the dynamic nature of a system by modeling the
flow of control from activity to activity. An activity represents an operation on
some class in the system that results in a change in the state of the system.
Typically, activity diagrams are used to model workflow or business processes and
internal operation.

 UML Models

157

A State diagram shows the different states an object is in during the lifecycle of its
existence in the system and the transitions in the states of the objects. These
transitions depict the activities causing transitions, and are shown by arrows.
An Activity diagram describes transitions and activities that cause changes in the
object states.

Let us take a look at the building blocks of an Activity diagram. An Activity
diagram consists of the following behavioral elements:

5.1 Initial Activity
This shows the starting point or first activity of the flow. It is denoted by a solid
circle followed by an arrow. This is similar to the notation used for Initial State,

5.2 Action states

Action states represent the non-interruptible actions of objects. It is represented by
a rectangle with rounded (almost oval) corners.

5.3 Branching

Similar to flowcharts, a logic where a decision is to be made is depicted by a
diamond. A diamond represents a decision with alternate paths. The outgoing
alternates should be labeled with a condition or guard expression.

5.4 Signal
When an activity sends or receives a message, that activity is called a signal.
Signals are of two types: Input signal (Message receiving activity) shown by a
concave polygon and Output signal (Message sending activity) shown by a
convex polygon.

5.5 Action Flow
Action flow arrows illustrate the relationships among action states.

 System Analysis and Design

158

5.6 Object Flow

Object flow refers to the creation and modification of objects by activities.
An object flow arrow from an action to an object means that the action creates or
influences the object. An object flow arrow from an object to an action indicates
that the action state uses the object.

5.7 Concurrent Activities

 Some activities occur simultaneously or in parallel. Such activities are called
concurrent activities. This is also called as synchronization. This is represented by
a horizontal split (thick dark line) and the two concurrent activities next to each
other, and the horizontal line is again drawn to show the end of the parallel activity
as given below:

5.8 Final State

An arrow pointing to a filled circle nested inside another circle represents the final
action state as shown below:

5.9 Creating an Activity Diagram

Below given is an activity diagram to depict an example of attending a course
lecture.

Figure 2: Activity Diagram

 UML Models

159

 The first activity is to get dressed to leave for the lecture.

 A decision then has to be made, depending on the time available for the
lecture to start and the timings of the public trains (metro). If there is
sufficient time to catch the train, then take the train; else, flag down a cab to
the University.

 The final activity is to actually attend the lecture, after which the Activity
diagram terminates.

5.10 Advantages and Disadvantages
The activity diagram focuses on activities; in this sense, it is like a flow chart
supporting compound decisions. However, it differs from a flow chart by explicitly
supporting parallel activities and their synchronization. Unlike EPC, the starting
point eliminates the need to traverse through the entire process model for
identifying the start of the process or triggering event. The back flow of the
activities can also be the represented.

The biggest disadvantage of activity diagrams is that they do not make explicit
which objects execute which activities, and the way that the messaging works
between them. Labeling of each activity with the responsible object can be done.
Often, it is useful to draw an activity diagram early in the modeling of a process, to
understand the overall process. Then, interaction diagrams can be used to allocate
activities to classes.

6. INTERACTION DIAGRAMS
An instantiated use case shows a particular series of interactions among objects in

a single execution of a system; it describes a single history without conditionality.

A specific pattern of message exchange to accomplish a specific purpose is called

an interaction. A scenario is a single execution history of an interaction.

An interaction is a behavioral specification that comprises a sequence of message

exchanges among a set of objects within a context to accomplish a specific

purpose, such as the implementation of an operation. To specify an interaction, it

is first necessary to specify a context, that is, to establish the objects that interact

and their relationships. Then, the possible interaction sequences are specified.

These can be specified in a single description containing conditionals (branches or

conditional signals), or they can be specified by supplying multiple descriptions,

each describing a particular path through the possible execution paths.

Interaction diagrams are models that describe how a group of objects collaborate
in some behavior – typically a single use-case. The diagrams show a number of
example objects and the messages that are passed between these objects within the
use-case. Interaction diagrams do not give an in depth representation of the
behavior. To see what a specific object is doing for several use cases, the State
Diagram is used. To see a particular behavior over many use cases or threads the
Activity Diagram is used.

Sequence diagrams and collaboration diagrams, can be used to demonstrate the

interaction of objects in a use case. Sequence diagrams generally show the

sequence of events that occur. Collaboration diagrams demonstrate how objects

are statically connected. Both diagrams are relatively simple to draw and contain

similar elements.

 System Analysis and Design

160

7. SEQUENCE DIAGRAMS

Sequence diagrams show the interactions between classes to achieve a result.
Because UML is designed for object-oriented programming, these
communications between classes are known as messages. It shows the objects and
the messages that are passed between these objects in the use case. The sequence
diagram lists objects horizontally and time vertically, and models these messages
over time.

Sequence diagrams show object interactions arranged in a time sequence. The flow
of Events can be used to determine what objects and interactions will be needed to
accomplish the functionality specified by the flow of events. In a Sequence
diagram, classes and actors are listed as columns, with vertical lifelines indicating
the lifetime of the object over time.

7.1 Object
Objects are instances of classes and are arranged horizontally. The pictorial
representation for an Object is a class (a rectangle) with the name prefixed by the
object name (optional) and a semi-colon. The following symbol shows the object.

7.2 Actor
Actors can also communicate with objects, and hence, they too can be listed as a
column. An Actor is modeled using the ubiquitous symbol, the stick figure.

7.3 Lifeline
The Lifeline identifies the existence of the object over time. The notation for a
Lifeline is a vertical dotted line extending from an object. The symbol for life line
is given below:

7.4 Activation
Activations, modeled as rectangular boxes on the lifeline, indicate when the object
is performing an action. The symbol is as follows:

 UML Models

161

7.5 Message

Messages, modeled as horizontal arrows between Activations, indicate the
communications between objects. The symbol for message is as follows:

Figure 3 is an example sequence diagram, using the default named objects.

Figure 3

Figure 4 shows how a student successfully gets admission to a course. The student
fills in some information and submits the form. The form then indicates the student
has been enrolled in math 101. In this case, Section 1 is open, so Math 101 adds
the student to Section 1.

Figure 4

Sequence diagrams are great tools in the beginning because they show everyone
including the customer step-by-step what has to happen. One of the benefits of
user-friendly computers with these types of diagrams is that every line coming
from an actor that represents a person can be used to highlight testable user
interface requirements.

Sequence diagrams are good for showing what’s going on, for deriving. out
requirements and for working with customers.

8. COLLABORATION DIAGRAMS

A collaboration diagram describes interactions among objects in terms of
sequenced messages. Collaboration diagrams represent a combination of
information taken from class, sequence and use case diagrams describing both the
static structure and dynamic behavior of a system. This type of diagram is a cross
between an object diagram and a sequence diagram. Unlike the sequence diagram,
which models the interaction in a column and row type format, the collaboration
diagram uses the free-form arrangement of objects as found in an object diagram.
This makes it easier to see all interactions involving a particular object.

 System Analysis and Design

162

In order to maintain the ordering of messages in such a free-form diagram,
messages are labeled with a chronological number. Reading a collaboration
diagram involves starting at message 1.0, and following the messages from one
object to another.

8.1 Messages
Messages, modeled as arrows between objects, and labeled with an ordering
number, indicate the communications between objects.

Unlike sequence diagrams, collaboration diagrams do not have an explicit way to
denote time and instead number the messages in order of execution. Sequence
numbering can become nested by using the Dewey decimal system. For example,
nested messages under the first message are labeled 1.1, 1.2, 1.3, and so on. The
condition for a message is usually placed in square brackets immediately following
the sequence number. A is used after the sequence number to indicate a loop.

Here is an example (figure 5) of an administrator using a web application to
manage a user account.

1. Find User

 1.1 LookUp User

2. Update User

 2.1 Validate User

 2.2 Update User.

Figure 5

The collaboration diagrams are shown based on the links between the objects.

Figure 6: Collaboration Diagram

A collaboration diagram displays object interactions organized around objects
and their links to one another. The benefit of collaboration diagrams is that all of
the messages that go between two objects for a particular use case or scenario

 UML Models

163

can be seen. Especially, in the case of a big, long scenario where the real estate
is smaller, it is easier to see these messages on a collaboration diagram.
A collaboration diagram is just a different view of a scenario. It is also called as
“interaction diagram”.

9. CLASS DIAGRAMS
Class diagrams are the essential elements of almost every object oriented method,
including UML. They describe the static structure of a system. A class diagram is
a graphic presentation of the static view which shows a collection of declarative
(static) model elements such as classes, types, and their contents and relationships.
Classes are arranged in hierarchies sharing common structure and behavior, and
are associated with other classes.

The purpose of a class diagram is to depict the classes within a model. In an object
oriented application, classes have attributes (member variables), operations
(member functions) and relation-ships with other classes. The UML class diagram
can depict all these things quite easily. The fundamental element of the class
diagram is an icon that represents a class.

For example, thousands of students attend the university; you would only model
one class, called Student, which would represent the entire collection of students.
A Student class represents student entities in a system. The Student class
encapsulates student information such as student id #, student name, and so forth.
Student id, student name, and so on are the attributes of the Student class. The
Student class also exposes functionality to other classes by using methods such as
getStudentName(), getStudentId(), and the like. Let us take a look at how a class is
represented in a class diagram.

The UML modeling elements found in class diagrams include:

 Classes and their structure and behavior.

 Association, aggregation, dependency and inheritance relationships.

 Multiplicity and navigation indicators.

 Role names.

A class is represented by a rectangle. The following diagram shows a typical class
in a class diagram:

Class

Attribute

operation ()

A class icon is simply a rectangle divided into three compartments:

 The top most compartment contains the name of the class. The class name
typically has the first alphabet capitalized. If a class has more than one word,
and capitalized then the first alphabet of both words is joined together.

 The middle compartment contains a list of attributes (member variables).

 The syntax is attribute: Type = “default value (if any)”

 e.g. studentid : int

 Studentname : string = “ICFAI”

 The bottom compartment contains a list of operations (member functions).

 The syntax is methodname(list of parameters (if any)) : return type

 e.g., getStudentId(studentid) : int

 In many diagrams, the bottom two compartments are omitted. Even when
they are present, they typically do not show all attributes and operations. The
goal is to show only those attributes and operations that are useful for the
particular diagram.

 System Analysis and Design

164

Active classes initiate and control the flow of activity, while passive classes
store data and serve other classes. Illustrate active classes with a thicker border
as given below.

9.1 Visibility

Use visibility markers to signify who can access the information contained
within a class. Private visibility hides information from anything outside the
class partition. Public visibility allows all other classes to view the marked
information. Protected visibility allows child classes to access information they
inherited from a parent class.

The format for attributes visibility is:
 Visibility attribute-name: type = default Value

e.g., + studentid: int
In object oriented design, it is generally preferred to keep most attributes private as
the accessor methods allow you to control access to the data. The most common
exception to this preference is constants.
The format for operations visibility is:
 Visibility operation-name (parameters): type
e.g., + getstudentid(studentid) : int

10. OBJECT DIAGRAMS
An object diagram shows the existence of objects and their relationships in the
logical view of a system and; also traces the execution of a scenario. It is a static
diagram. Notation is same as the class diagram. Class diagrams can contain objects
and, so a class diagram with objects and no classes is an object diagram.

10.1 Interfaces
There are classes that have nothing but pure virtual functions. In Java such entities
are not classes at all; they are a special language element called interface. UML
has followed the Java example and has created some special syntactic elements for
such entities.

Interfaces are very similar to abstract classes with the exception that they do not
have any attributes. As well, unlike a class, all of the operations in an interface
have no implementation. The UML notation for an interface is a small circle with
the name of the interface connected to the class. A class that requires the
operations in the interface may be attached to the circle by a dashed arrow. The
dependent class is not required to actually use all of the operations. For example, a
Student object may interact with the College object to get the Examination id; this
relationship is depicted in the following figure with UML class interface notation.

Every class diagram has classes, associations and multiplicities. Navigability and
roles are optional items placed in a diagram to provide clarity.

 UML Models

165

Our class diagram has three kinds of relationships:

a Association.

b. Aggregation.

c. Generalization.

10.1.1 ASSOCIATION

Associations represent static relationships between classes. Association is a

relationship between instances of the two classes. There is an association

between two classes if an instance of one class must know about the other in

order to perform its work. In a diagram, an association is a link connecting two

classes. An association has two ends. An end may have a role name to clarify the

nature of the association. Association names are placed above, on, or below the

association line. Use a filled arrow to indicate the direction of the relationship.

Place roles near the end of an association. Roles represent the way the two

classes see each other.

For example: A “student studies in a college” association can be shown as:

Figure 7

Multiplicity (Cardinality)
The multiplicity of an association end is the number of possible instances of the

class associated with a single instance of the other end. A multiplicity specification

is shown as a text string sequence of integer intervals; where an interval represents

a range of integers in this format. The terms lower bound and upper bound are

integer values, specifying the range of integers (from lower bound to the upper

bound). The star character (*) may be used for the upper bound, denoting an

unlimited upper bound. If a single integer value is specified, then the integer

contains single values as shown below.

Multiplicities Meaning

0..1 Zero or one instance. The notation n . . m indicates n to m
instances.

0..* or * no limit on the number of instances (including none).

1 exactly one instance

1..* at least one instance

For example, one company will have one or more employees, but each employee
works for one company only.

 System Analysis and Design

166

Figure 8

For example, the class Order is associated with the class Customer.
The multiplicity of the association denotes the number of objects that can
participate in the relationship.1. For example, an Order object can be associated
with only one customer, but a customer can be associated with many orders.

Figure 9

Directed Association

Association between classes is bi-directional by default. You can define the flow
of the association by using a directed association. The arrowhead identifies the
container-contained relationship. For example,

Figure 10

Reflexive Association

An example of this kind of relation is when a class has a variety of responsibilities.
For example, an employee of a college can be a professor, a housekeeper, or an
administrative assistant.

Qualifier
A qualifier is an association attribute. For example, a Person object may be
associated to a Bank object. An attribute of this association is the account#. The
account is the qualifier of this association. A qualifier is shown as a small
rectangle attached to the end of an association path, between the final path
segment and the symbol of the class to which it connects. The qualifier rectangle is
part of the association path, not part of the class. The qualifier rectangle usually is
smaller than the attached class rectangle. It is shown in figure 11.

Figure 11

 UML Models

167

10.1.2 COMPOSITION AND AGGREGATION
An aggregation is a form of association, in which one class belongs to a collection.

An aggregation has a diamond – end pointing to the part containing the whole.

Composition is a special type of aggregation that denotes a strong ownership

between Class A, the whole, and Class B, its part. A composition is illustrated with

a filled diamond.

Use a hollow diamond to represent a simple aggregation relationship, in which the

“whole” class plays a more important role than the “part” class, but the two classes

are not dependent on each other. The diamond end in both a composition and

aggregation relationship points toward the “whole” class or the aggregate.

Figure 12

A stronger form of aggregation – a composite aggregation – is shown by a
black diamond-shaped arrowhead and is used where components can be
included in a maximum of one composition at a time. If the parent of a
composite aggregation is deleted, usually all of its parts are deleted with it;
however, a part can be individually removed from a composition without
having to delete the entire composition. Compositions are transitive,
asymmetric relationships and can be recursive.

Figure 13 shows an aggregation association and a composition association. The
composition association is represented by a solid diamond. It is said that Product
Group is composed of Products. This means, if a Product Group is destroyed, the
Products within the group are destroyed as well. The aggregation association is
represented by the hollow diamond. Purchase Order is an aggregate of Products.
If a Purchase Order is destroyed, the Products still exist.

Figure 13

10.1.3 GENERALIZATION

Generalization is another name for inheritance or an “is a” relationship. It refers to

a relationship between two classes where one class is a specialized version of

another. An inheritance link indicating one class is a super class of the other. A

generalization has a triangle pointing to the super class. For example, Honda is a

type of car. So, the class Honda would have a generalization relationship with the

class ‘car’.

 System Analysis and Design

168

Figure 14

In real life coding examples, the difference between inheritance and aggregation
can be confusing. For an aggregation relationship, the aggregate (the whole) can
access only the PUBLIC functions of the part class. On the other hand, inheritance
allows the inheriting class to access both the PUBLIC and PROTECTED functions
of the superclass.

Dependencies

A dependency is a using relationship that states that a change in a specification of
one thing may affect another thing that uses it. Dependencies are used in the
context of classes to show that one class uses another class as an argument in its
method’s signature. Figure 15 below shows the dependency relation.

Figure 15

11. STATE CHART DIAGRAMS

State Chart diagrams are also referred to as State diagrams. State chart diagrams
capture the life cycles of objects, sub-systems and systems. They indicate what
states an object can have and how different events affect those states over time.
State chart diagrams should be attached to classes that have clearly identifiable
states and are governed by complex behavior. For example, the television can be in
the OFF state and when the power button is pressed, the television goes into the
ON state. Pressing the power button yet again causes a state transition from the
ON state to the OFF state. In comparison to the other behavioral diagrams which
model the interaction between multiple classes, State diagrams typically model the
transitions within a single class.

State diagrams are used to describe the behavior of a system. State diagrams
describe all of the possible states of an object as events occur. Each diagram
usually represents objects of a single class and tracks the different states of its
objects through the system.

11.1 States
States represent situations during the life of an object. It is represented using a
rectangle with rounded corners and the state name written inside. The State
notation is:

We can also say that a state is a condition during the life of an object during
which it satisfies some condition(s), performs some action(s), or waits for some
event(s). The state changes when the object receives some event and; the object
is said to undergo a state transition. The state of an object depends on its
attribute values and links to other objects. An event is something that takes place
at a certain point in time.

 UML Models

169

11.2 Transition
A Transition marks the changing of the object State caused by an event i.e., which
shows the possible changes of state. The notation for a Transition is an arrow, with
the Event Name written above, below, or alongside the arrow.

11.3 Initial State

The Initial State is the state of an object before any transitions. For objects, this
could be the state when instantiated. The Initial State is marked, using a solid
circle followed by an arrow representing the object’s initial state. Only one initial
state is allowed on a diagram.

11.4 Final State
End States mark the destruction of the object whose state is being modeled such
states are represented using an arrow pointing to a filled circle nested inside
another circle represents the object’s final state.

11.5 Synchronization and Splitting of Control

A short heavy bar with two transitions entering it represents a synchronization of
control. A short heavy bar with two transitions leaving it represents a splitting of
control that creates multiple states. This is shown below.

Some examples of events are a customer places an order, a student registers for a
class, a person applies for a loan, and a company hires a new employee. For the
purpose of modeling, an event is considered to be instantaneous. A state, on the
other hand, spans a period of time. An object remains in a particular state for some
time before transitioning to another state. For example, an Employee object might
be in the Part-time state (as specified in its employment-status attribute) for a few
months, before transitioning to a Full-time state, based on a recommendation from
the manager (an event).

Figure16 below depicts the dialing state, which consists of start and dial states:

Figure 16

 System Analysis and Design

170

12. IMPLEMENTATION DIAGRAMS

A Use Case is a formal description of the functionality the system will have when
constructed. An implementation diagram is typically associated with a Use Case to
document what design elements (e.g., components and classes) will implement the
Use Case functionality in the new system. This provides a high level of traceability
for the system designer, the customer and the team that will actually build the
system. UML defines two implementation diagrams: To show the relationship
between the software components that make up a system (the component diagram)
and the relationship between the software and the hardware on which it is
deployed at run-time (the deployment diagram).

A component diagram is an implementation diagram that shows the structure of
the code itself. It is used to know about compiler and run-time dependencies
between software components, such as source code files. A Deployment diagram
is an implementation diagram that shows the structure of a run-time system. This
diagram helps us know about the physical relationship between software and
hardware components and the distribution of components to processing nodes.

13. COMPONENT DIAGRAMS

A component diagram describes the organization of the physical components in a
system. It depicts the components that compose an application, system or
enterprise. The components, their interrelationships, interactions and their public
interfaces are depicted.

13.1 Component
Components represent the physical packaging of a module of code. It is
represented as a rectangle with tabs.

13.2 Interface

An interface describes a group of operations used or created by components. It is
graphically shown as:

13.3 Dependencies

The dependencies between the components show how changes made to one
component may affect the other components in the system. Dependencies in a
component diagram are represented by a dashed line between two or more
components.

 UML Models

171

14. DEPLOYMENT DIAGRAM
Deployment diagrams serve to model the hardware used in system
implementations and the associations between those components. The elements
used in deployment diagrams are nodes (shown as a cube), components (shown as
a rectangular box, with two rectangles protruding from the left side) and
associations.

14.1 Node
A node is a physical resource that executes code components i.e., a node usually
represents a piece of hardware in the system. It is represented as:

14.2 Association

Association refers to a physical connection between nodes such as Ethernet.

14.3 Components and Nodes

Place components inside the node that deploys them.

The above deployment diagram shows the hardware used in a small office
network. The application server (node) is connected to the database server (node)
and the database client (component) is installed on the application server. The
workstation is connected (association) to the application server and to a printer.

SUMMARY
 A model is a simplified representation of reality – simplified because reality

is too complex or large and much of the complexity actually is irrelevant to
the problem being described or solved.

 The unified modeling language was developed by Booch, Jacobson, and
Rumbaugh. The UML encompasses the unification of their modeling
notations.

 The UML class diagram is the main static structure analysis diagram for the
system. It represents the class structure of a system with relationships
between classes and inheritance structure. The class diagrams are developed
through use-case, sequence, and collaboration diagrams.

 The use-case diagram captures information on how the system or business
works or how one wishes it to work. It is a scenario-building approach in
which one models the processes of the system. It is an excellent way to learn
object-oriented analysis of the system.

 System Analysis and Design

172

 UML sequence diagram is used for dynamic modeling, where objects are
represented as vertical lines and message passed back and forth between the
objects are modeled by horizontal vectors between the objects.

 The UML collaboration diagram is an alternative view of the sequence
diagram, showing in a scenario how objects interrelate with one another.

 State chart diagrams, another form of dynamic modeling, focus on the vents
occurring within a single object as it responds to messages. An and activity
diagram is used to model an entire business process. Thus, an activity model
can represent several different classes.

 Implementation diagrams show the implementation phase of systems
development, such as the source code and run-time implementation
structures. The two types of implementation diagrams are component
diagrams, which show the structure of the code itself, and deployment
diagrams, which show the structure of the run time system.

 Stereotypes represent a built-in extensibility mechanism of the UML.
User-defined extensions of the UML are enabled through the use of
stereotypes and constraints.

 UML graphical notations can be used not only to describe the system’s
components but also to describe a model itself that is known as metamodel.
It is a model of modeling elements. The purpose of the UML metamodel is to
provide a single, common, and definitive statement of the syntax and
semantics of the elements of UML.

Chapter VII

Object-Oriented Analysis
After reading this chapter, you will be conversant with:

 Use Case Model

 Developing Effective Documentation

 Approaches for Identifying Classes

 Identifying Attributes and Methods

 Defining Attributes by Analyzing Use Cases
and Other UML Diagrams

 System Analysis and Design

174

In software development, analysis is the process of studying and defining the
problem to be resolved. It involves discovering the requirements that the system
must perform, the underlying assumptions with which it must fit, and the criteria
by which its performance will be judged as success or failure.

Object-Oriented Analysis (OOA), is the process of defining the problem in terms
of objects: real-world objects with which the system must interact and candidate
software objects used to explore various solution alternatives. The natural fit of
programming objects to real-world objects has a big impact. It is possible to define
all the real-world objects in terms of their classes, attributes and operations.
Its emphasis is on finding and describing the objects or concepts of the problem
domain. Focus should be on the point that the system must do the right thing.

The object-oriented analysis phase of the unified approach uses actors and use
cases to describe the system from the users’ perspective. The use cases identified
will be involved throughout the development process.

The OOA process consists of the following steps:

1. Identify the actors:

 Who is using the system?

 Or, in the case of a new system, who will be using the system?

2. Develop a simple business process model using UML activity diagram.

3. Develop the use cases:

 What are the users doing with the system?

 Or, in case of a new system, what the users will be doing with the system?

 Use case provides us with comprehensive documentation of the system
under study.

4. Prepare interaction diagrams:

 Determine the sequence.

 Develop collaboration diagrams.

5. Classification – develop a static UML class diagram:

 Identify classes.

 Identify relationships.

 Identify attributes.

 Identify methods.

6. Iterate and refine: if needed, repeat the preceding steps.

The above process steps are shown in figure 1 below:

Figure 1: OOA Process

 Object-Oriented Analysis

175

Object-Oriented analysis contains the following activities:

 Identifying Objects: Objects must always exist, so that the system is stable,

 Organizing the Objects: The objects that are identified are classified so that
similar objects can later be defined in the same class,

 Identifying Relationships between Objects: This helps to determine inputs
and outputs of an object,

 Defining Operations of the Objects: Processing of data within an object, and

 Defining Objects Internally: Information held by the objects.

1. USE CASE MODEL
A Use Case represents a discrete unit of interaction between a user (human or
machine) and a system. A Use Case is a single unit of meaningful work. At the
heart of the Unified Modeling Language (UML), are Use Cases. Use cases form
the basis for the interaction of the system with the outside world (users, other
systems, etc.). Use cases are designed to capture, via a combination of structured
text and graphics, the functional requirements of a system. Use cases are usually
described in a textual document that accompanies a use case diagram; the
combination of these use case diagrams and their supporting documentation is
known as a Use Case Model i.e., the Use Case Model describes the proposed
functionality of the new system.

The use case model includes the actors, the system, and the use cases themselves.
The set of functionality of a given system is determined through the study of the
functional requirements of each actor, expressed in the use cases in the form of
‘families’ of interactions. Actors are represented by little stick people who trigger
the use cases, which are represented as ellipses contained within the system.

Figure 2: Use Case Model

1.1 Development of the Use-case Model
Following are the steps in the development of the use-case model:

 Defining the System.

 Finding Actors and Uses Cases.

 Use Case Descriptions.

 Defining Relationships between Use Cases.

 Verifying and Validating the Model.

1.1.1 DEFINING THE SYSTEM
The formal specification of a use case includes:

1. Requirements: These are the formal functional requirements that a Use Case
must provide to the end-user. These correspond to the functional specifications
found in structured methodologies. A requirement is a contract that the Use
Case will perform some action or provide some value to the system.

 System Analysis and Design

176

2. Constraints: These are the formal rules and limitations that a Use Case
operates under, and includes pre, post and invariant conditions.
A pre-condition specifies what must have already occurred or be in place
before the Use Case may start. A post-condition documents what will be true
once the Use Case is complete. An invariant condition specifies what will be
true throughout the time the Use Case operates.

3. Scenarios: Scenarios are formal descriptions of the flow of events that occur
during a Use Case instance. These are usually described in text and
correspond to a textual representation of the Sequence Diagram.

1.1.2 ACTOR
An actor is someone or something that interacts with the system. The actor is a
type (a class), not an instance. The actor represents a role, not an individual user of
the system. Actors can be ranked. A primary actor is one that uses the primary
functions of the system. A secondary actor is one that uses secondary functions of
the system, – those functions that maintain the system, such as managing
databases, communication, backups, and other administration tasks. The symbol
for an actor is depicted below:

Actor

1.1.3 USE CASES

Use cases (figure 3) are determined by observing and specifying one actor after
another and the interaction sequences (scenarios) from the user's standpoint. They
are described in terms of the information exchanged and the way the system is
used. A use case groups a family of usage scenarios according to a functional
criterion. Use cases are abstractions of dialog between the actors and the system:
they describe potential interactions without going into the details of each scenario.

Use cases must be seen as classes whose instances are the scenarios. Each time an
actor interacts with the system, the use case instantiates a scenario. This scenario
corresponds to the message flows exchanged by objects during the particular
interaction that corresponds to the scenario. Analysis of requirements by use cases
is very well complemented by an iterative and incremental approach.

The scope of use cases is much more in additon to defining of the requirements of
the system. Indeed, use cases come into play throughout the lifecycle, from the
specification stage to system testing, analysis, design, implementation, and
documentation stages. From that standpoint, it is possible to navigate first towards
the classes and objects that collaborate to satisfy a requirement, then towards the
tests that verify whether the system performs its duties correctly.

Figure 3

 Object-Oriented Analysis

177

1.1.4 RELATIONSHIPS BETwEEN USE CASES
Use case diagrams represent use cases, actors, and relationships between use
cases and actors. UML defines three types of links between actors and use cases
as given below:

i. They Communicate Relationship: The participation of the actor is signaled
by a solid line between the actor and the use case. This is the only
relationship between actors and use cases.

ii. The Uses Relationship: A uses relationship between use cases means that an

instance of the source use case also includes the behavior described by the
target use case. One Use Case may include the functionality of another as
part of its normal processing. Generally, it is assumed that the included Use
Case will be called every time the basic path is run. Representation of the
uses relationship using a stereotyped generalization relationship is as follows:

 An example may be to list a set of customer orders to choose from before

modifying a selected order – in this case the <list orders> Use Case may be
included every time the <modify order> Use Case is run. A Use Case may be
included by one or more Use Cases; so, it helps to reduce duplication of
functionality by factoring out common behavior into Use Cases that are re-
used many times.

iii. The Extends Relationship: An extends relationship between use cases
means that the source use case extends the behavior of the destination use
case. One Use Case may extend the behavior of another – typically when
exceptional circumstances are encountered. The extends relationship using a
stereotyped generalization relationship is depicted below.

For example, if before modifying a particular type of customer order, a user must
get approval from some higher authority, then the <get approval> Use Case may
optionally extend the regular <modify order> Use Case.

Representation of an implementation example of the various relationships between
use cases is given below. Money transfer by the computer is an extension of the
transfer operation performed at the bank lobby. In both cases, the customer must
be identified.

 System Analysis and Design

178

1.1.5 VIA NET BANK ATM – USE CASE STUDY
Consider the following case study of Via Net Bank ATM system’s requirements
and identify the Actors and Use Cases:

 The bank client must be able to deposit an amount and withdraw an amount
from his or her accounts using the touch screen at the Via Net bank ATM
kiosk. Each transaction must be recorded and the client must be able to
review all transactions performed against a given account. Recorded
transactions must include the date, time, transaction type, amount, and
account balance after the transaction.

 A Via Net bank client can have two types of accounts: a checking account
and a savings account. For each checking account, one related savings
account can exist.

 Access to the Via Net bank accounts is provided by a PIN number consisting
of four integer digits between 0 and 9.

 One PIN number allows access to all accounts held by a bank client.

 No receipts will be provided for any account transactions.

 The bank application operates for a single banking institution only.

 Neither a checking nor a savings account can have a negative balance. The
system should automatically withdraw money from a related savings account
if the requested withdrawal amount on the checking account is more than its
current balance. If the balance on a savings account is less than the
withdrawal amount requested, the transaction will stop and the bank client
will be notified.

Identifying Actors and Use Cases for the Via Net Bank ATM System

The bank application will be used by one category of users – bank clients.
Identifying the actors of the system is an iterative process and can be modified.
The actor of the bank system is the bank client. The bank client must be able to
deposit an amount to and withdraw an amount from his or her accounts using the
bank application.

The following scenarios show use-case interactions between the actor (bank client)
and the bank. In real life application these use cases are created by system
requirements, examination of existing system documentation, interviews,
questionnaires, observation, etc.

Use-case Name: Bank ATM Transaction

Bank clients interact with the bank system by going through the approval process.
After the approval process, the bank client can perform the transaction. The steps
involved in the ATM transaction use case are listed below:

 ATM card is inserted.

 The approval process is performed.

 Type of transaction is asked.

 Type of transaction is entered.

 Transaction is performed.

 Card is rejected.

 Requested to take card

 Card is taken.

 Object-Oriented Analysis

179

These steps are shown in the Figure given below:

 Figure 4

Use-case Name: Approval Process

The client enters a PIN that consists of four digits. If the PIN is valid, the client’s
accounts become available. The following are the steps:

1. Password is requested.

2. Password is entered.

3. Password is verified.

Use-case Name: Invalid PIN

If the PIN is not valid, an appropriate message is displayed to the client. It extends
the approval process.

Use-case Name: Deposit Amount

The bank client interacts with the bank system after the approval process by
requesting to deposit money to an account. The client selects the account to which
a deposit is going to be made and enters an amount in dollar currency. The system
creates a record of the transaction. This use case extends the bank ATM
transaction use case. The following are the steps:

1. Account Type is requested.

2. Deposit Amount is requested.

3. Deposit Amount is entered.

4. Either cheque or cash is kept in the envelope and deposited into the ATM.

Use-case Name: Deposit Savings

The client selects the savings account for which a deposit is going to be made. All
other steps are similar to the deposit amount use case. The system creates a record
of the transaction. This use case extends the deposit amount use case.

 System Analysis and Design

180

Figure 5: Transaction Use Cases

Use-case Name: Deposit Checking

The client selects the checking account for which a deposit is going to be made.
All other steps are similar to the deposit amount use case. The system creates a
record of the transaction. This use case extends the deposit amount use case.

Use-case Name: Withdraw Amount

The bank client interacts with the bank system (after the approval process) by
requesting to withdraw an amount from a checking account. After verifying that
there are sufficient funds the transaction is performed. The system creates a record
of the transaction. This use case extends the bank ATM transaction use case. The
following are the steps:

1. Account Type is requested.

2. Withdrawal Amount is requested.

3. Withdrawal Amount is entered.

4. Availability of funds are verified.

5. Cash is ejected.

Use-case Name: Withdraw Checking

The client tries to withdraw an amount from his or her checking account. The
amount is less than or equal to the checking account’s balance and the transaction
is performed. The system creates a record of the transaction. This use case extends
the withdraw amount use case.

Figure 6: The Checking Account Use-cases

 Object-Oriented Analysis

181

Use-case Name: Withdraw more from Checking
The client tries to withdraw an amount from his or her checking account. If the
amount is more than the checking account’s balance, the insufficient amount is
withdrawn from the related savings account. The system creates a record of the
transaction and the withdrawal is successful. This use case extends the withdraw
checking use case and uses the withdraw savings use case.

Use-case Name: Withdraw Savings
The client tries to withdraw an amount from a savings account. The amount is less
than or equal to the balance and the transaction is performed on the savings
account. The system creates a record of the transaction since the withdrawal is
successful. This use case extends the withdraw amount use case.

Use-case Name: Checking Transaction History
The bank client requests a history of transactions for a checking account. The
system displays the transaction history for the checking account. This use case
extends the bank transaction use case.

 Figure 7: The Savings Account Use cases Package

Use-case Name: Savings Transaction History

The bank client requests a history of transactions for a savings account. The
system displays the transaction history for the savings account. This use case
extends the bank transaction use case.

The use-case list contains at least one scenario of each significantly different kind
of use-case instance. Each scenario shows a different sequence of interactions
between actors and the system, with all decisions being definite. If the scenario
consists of if statement, for each condition create one scenario.

The extends association is used when one has a use case that is similar to another
use case but does a bit more. It is a subclass. In the example, the checking
withdraw use case extends the withdraw amount use case. The withdraw amount
use case represents the case when all goes smoothly. Many things can affect the
flow of events, such as when the withdrawal is for more than the amount of
money in the checking account. Withdraw more from checking is the use case
that extends the checking withdraw. Association occurs when a behavior is
common to more than one use case and one wants to avoid copying the
description of that behavior.

Use cases are an essential tool for identifying requirements. Developing use cases
is an iterative process. Although most use cases are generated at this phase of
system development, one will uncover more as one proceeds. Every use case
represents a potential requirement.

 System Analysis and Design

182

2. DEVELOPING EFFECTIVE DOCUMENTATION
Documenting one’s project not only provides a valuable reference point and
form of communication but often helps reveal issues and gaps in the analysis and
design. A document can serve as a communication vehicle among the project’s
team members, or it can serve as an initial understanding of the requirements.
In many projects, documentation can be an important factor in making a decision
about committing resources. Application software is expected to provide a
solution to a problem. It is very difficult, if not impossible, to document a poorly
understood problem. The main issue in documentation during the analysis phase
is to determine the task of the system. Decisions about how the system works are
delayed to the design phase. The following points are important with regard to
documentation:
 The usage of document
 Objective of the document.
 Management perspective of the document.
 Readers of the document.

2.1 Organization Conventions for Documentation
The documentation depends on the organization’s rules and regulations. Most
organizations have established standards or conventions for developing
documentation. In many organizations, the standards are non-existent. In other
cases, the standards may be excessive. Documentation should neither be too much
nor too little. Each organization defines what is best for it, and one must respond to
that definition and refinement.

2.2 Guidelines for Developing Effective Documentation
Bell and Evans provide the following guidelines for making documents fit the
needs and expectations of the audience:

 Common cover: All documents should share a common cover sheet that
identifies the document, the current version, and the individual responsible
for the content. As the document proceeds through the life cycle phases, the
responsible individual may change. That change must be reflected in the
cover sheet.

 80-20 Rule: As for many applications, the 80-20 rule generally applies
for documentations: 80 percent of the work can be done with 20 percent
of the documentation. The trick is to make sure that the 20 percent is
easily accessible and the rest (80 percent) is available to those (few) who
need to know.

 Familiar Vocabulary: The formality of a document will depend on how it is
used and who will read it. When developing documentation, use a vocabulary
that the readers understand and are comfortable with. The main objective is
to communicate with readers and not impress them with buzz words.

 Make the Document as Short as Possible: Assume that one is developing a
manual. The key in developing an effective manual is to eliminate all
repetitions; present summaries, reviews, organization chapters in less than
three pages; and, make chapter headings task oriented so that the table of
contents also could serve as an index.

 Organize the Document: Use the rules of good organization within each
section. Most CASE tools provide documentation capability by providing
customizable reports. The purpose of these guidelines is to assist in creating
an effective documentation.

After the use cases are scheduled and ranked, the next step within iteration is to
design classes, their qualities and the relationships among them. A class is a
specification of the data and behaviors that instances of the class have in common.
Classification is concerned with identifying classes rather than individual objects
in a system.

 Object-Oriented Analysis

183

3. APPROACHES FOR IDENTIFYING CLASSES
Following are the four approaches for identifying classes:

1. Noun phrase approach.

2. Common class patterns approach.

3. Use-case-driven approach (Sequence/Collaboration modeling).

4. Classes-Responsibilities-Collaborators (CRC) approach.

5. Class Relationships.

The use-case-driven approach is used for identifying classes and understanding the
behavior of objects. The CRC approach is more useful for identifying
responsibilities (e.g., methods) than classes.

3.1 Noun Phrase Approach
Using this method, one has to read through the use cases, interviews, and
requirements specification carefully, looking for noun phrases. Nouns are classes.
Verbs are methods of the classes. Change all plurals to singular and make a list.
Divide the list into three categories:

1. Relevant Classes.

2. Fuzzy Classes.

3. Irrelevant Classes.

These three categories are shown in figure 8. Classes are selected from the first
two categories.

Figure 8

Note that some classes are implicit or taken from general knowledge. Avoid
computer implementation classes; defer them to the design stage.

Selecting Classes

Selecting classes from the sets of relevant and fuzzy classes in the following
problem domains:

 Redundant classes

 Adjective classes

 Attribute classes

 Irrelevant classes.

Redundant Classes: It is not advisable to keep two classes that express same
information. If more than one word is being used to describe same idea, select one
that is most meaningful in the system’s context. This is part of building a common
vocabulary for the system as a whole.

Adjective Classes: Does the object represented by the noun behave differently
when the adjective is applied to it? If yes, then make new class. If no, ignore
adjective. For example, if Adult Membership and youth membership behave
differently, then they should be classified as different classes.

 System Analysis and Design

184

Attribute Classes: Tentative objects which are only used as values should be
attributes, not classes.

Irrelevant Classes: Each class must have a purpose and every class should
necessarily be clearly defined.

In software development, the process of identifying relevant classes and
eliminating the irrelevant classes is an incremental process. Each iteration often
uncovers some classes that have been overlooked. Classification is the essence of
good object-oriented analysis and design.

3.1.1 THE VIANET BANK ATM SYSTEM: IDENTIFYING CLASSES BY USING NOUN
PHRASE APPROACH

In this approach, we must start by reading the use case and applying the principles
for identifying classes:

Initial list of Noun Phrases: The use cases of the bank system produce the
following noun phrases:

Account

Account Balance

Amount

Approval Process

ATM Card

ATM Machine

Bank

Bank Client

Card

Cash

Check

Checking

Checking Amount

Client

Client’s Account

Currency

Dollar

Envelope

Four Digits

Fund

Invalid PIN

Message

Money

Password

PIN

PIN Code

Record

Savings

Savings Account

 Object-Oriented Analysis

185

Step

System

Transaction

Transaction History

The candidate classes must be selected from relevant and fuzzy classes. It is safe to
eliminate the irrelevant classes. The relevant classes are Envelop, Digits and Step.
Strikeouts indicate eliminated classes.

Account

Account Balance

Amount

Approval Process

ATM Card

ATM Machine

Bank

Bank Client

Card

Cash

Check

Checking

Checking Amount

Client

Client’s Account

Currency

Dollar

Envelope

Four Digits

Fund

Invalid PIN

Message

Money

Password

PIN

PIN Code

Record

Savings

Savings Account

Step

System

Transaction

Transaction History

Reviewing the Redundant Classes and Building a Common Vocabulary: If different
words are being used to describe the same idea, we must select the one that is most
meaningful in the context of the system and eliminate the others i.e.

 System Analysis and Design

186

Client, Bank Client = Bank Client

Account, Client’s Account = Account

PIN, PIN Code = PIN

Checking, Checking Account = Checking Account

Savings, Savings Account = Savings Account

Fund, Money = Fund

ATM Card, Card = ATM Card

Here is the revised list of candidate classes:

Account

Account Balance

Amount

Approval Process

ATM Card

ATM Machine

Bank

Bank Client

Card

Cash

Check

Checking

Checking Amount

Client

Client’s Account

Currency

Dollar

Envelope

Four Digits

Fund

Invalid PIN

Message

Money

Password

PIN

PIN Code

Record

Savings

Savings Account

Step

System

Transaction

Transaction History

 Object-Oriented Analysis

187

Reviewing the Classes Containing Adjectives: In this example, we have no classes
containing adjectives that we can eliminate.

Reviewing the Possible Attributes: Now, we focus on identifying the noun phrases
that are attributes, not classes. The noun phrases used only as values should be
restated as attributes.

Amount : A value, not a class.

Account Balance : An attribute of the Account Class

Invalid PIN : It is only a value, not a class

Password : An attribute, possibly of the Bank Client class

Transaction History : An attribute, possibly of the Transaction Class

PIN : An attribute, possibly of the Bank Client Class

Here is the revised list of candidate classes:

Account

Account Balance

Amount

Approval Process

ATM Card

ATM Machine

Bank

Bank Client

Card

Cash

Check

Checking

Checking Amount

Client

Client’s Account

Currency

Dollar

Envelope

Four Digits

Fund

Invalid PIN

Message

Money

Password

PIN

PIN Code

Record

Savings

Savings Account

Step

System

Transaction

Transaction History

 System Analysis and Design

188

Reviewing the class Purpose: Identifying the classes that play a role in achieving
system goals and requirements is a major activity of object-oriented analysis. The
classes that add no purpose to the system have been deleted from the list. The
candidate classes are as follows:

ATM Machine class : Provides an interface to the Via Net bank.

ATM Card class : Provides a client with a key to an account.

BankClient class : A client is an individual that has a checking
account and, possibly, a savings account.

Bank class : Bank clients belong to the Bank.

Account Class : An Account class is a formal class; it defines the
common behaviors that can be inherited by more
specific classes such as CheckingAccount and
SavingsAccount.

CheckingAccount : It models a client’s checking account and provides
more specialized withdrawal service.

SavingsAccount : It models a client’s savings account.

Transaction class : Keeps track of transaction, time, date, type,
amount, and balance.

3.2 Common Class Patterns Approach

This approach is based on the knowledge-base of common classes that have been
proposed by various researchers. They have been compiled and listed the
following patterns for finding the candidate class and object:

1. Event Classes: These are points in time that must be recorded and
remembered. Things happen at a given date and time, in an ordered sequence.

 Examples: landing, interrupt, request etc.,

2. Organization Classes: An organization class is a collection of people,
resource, facilities, or group to which the users belong; their capabilities have
a defined mission, whose existence is largely independent of the individuals.

 Example: An accounting department might be considered a potential class.

3. People/Role Classes: The different roles users play in interacting with the
application. Two types – those people who use the system, such as operators
or clerks; and those who do not use the system but about whom information is
kept, such as clients, employees, teachers and managers.

4. Place Classes: These are physical locations that the system must keep
information about.

 Examples: buildings, stores, sites or offices.

5. Tangible Things/Device Classes: Physical objects or group of objects, that
are tangible, and devices with which the application interacts.

 Examples: cars, pressure sensors.

6. Concept Classes: Concepts are principles or ideas not tangible but used to
organize or keep track of business activities and/or communications.

 Example: performance.

 Object-Oriented Analysis

189

3.2.1 THE VIA NET BANK ATM SYSTEM: IDENTIFYING CLASSES BY USING
COMMON CLASS PATTERNS

To better understand the common class patterns approach, we once again try to

identify classes in the bank system by applying common class patterns. The

common class patterns are concepts, events, organization, people, places, and

tangible things and devices.

Events classes are points in time that must be recorded. Associated with things

remembered are attributes (after all, the things to remember are objects) such as

who, what, when, where, how, or why. The bank system events classes are as

follows:

 Account Class: An Account class is a formal (or abstract) class; it defines

the common behaviors that can be inherited by more specific classes such as

CheckingAccount and SavingsAccount.

 CheckingAccount Class: It models a client’s checking account and provides

more specialized withdrawal services.

 SavingsAccount Class: It models a client’s savings account.

 Transaction Class: It keeps track of transaction, time, date, type, amount,

and balance.

 Organization Classes specify collection of people, resources, facilities, or

groups to which the users belong. These classes have a defined mission,

whose existence does not depend upon individuals. The bank system’s

organization class is as follows:

 – Bank class: Bank clients belong to the Bank. It is a repository of

accounts and processes the account’s transactions.

 – People and person classes answer this question: What role does a

person play in the system? Coad and Yourdon explain that a class being

represented by a person can be divided into two types: those

representing the users of the system, such as an operator or a clerk who

interacts with systems, and those people who do not use the system but

about whom information is kept by the system. The following is the

bank system people and person class.

 – BankClient class: A client is an individual that has a checking account

and, possibly, a savings account.

 – Place classes represent physical locations, buildings, stores, sites, or

offices about which the system needs to keep track. Place classes are not

applicable to this bank system.

 – The tangible things and devices classes represent physical objects or

groups of objects that are tangible and devices with which the

application interacts. In the banking system, tangible and device classes

include these items.

 – ATMMachine Class: It allows access to all accounts held by a bank

client.

 System Analysis and Design

190

3.3 Use-Case-Driven Approach
The use-case driven approach is the third approach. In this, the scenarios are
described in text or through a sequence of steps. To identify objects of a system,
the lowest level of executable use cases is further analyzed with a sequence
diagram. By walking through the steps of the diagram, one can determine which
objects are necessary for the steps to take place as described.

Implementation of Scenarios

The UML specification recommends that at least one scenario be prepared for each
significantly different use-case instance. Each scenario shows a different sequence
of interaction between actors and the system. It helps us to understand the behavior
of the system’s objects.

When you have arrived at the lowest use-case level, you may create a child
sequence diagram and collaboration diagrams after which you can model the
implementation of the scenario. While use cases and the steps or textual
descriptions that define them offer a high-level view of the system, the sequence
diagram enables you to model a more specific analysis and also assists in the
design of the system by modeling the interactions between objects in the system.

To identify the objects of a system, we further analyze the lowest level use cases
with a sequence and collaboration diagram pair. Sequence and collaboration
diagrams represent the order in which things occur and how the objects in the
system send messages to one another. These diagrams provide a macro-level
analysis of the dynamics of a system.

3.3.1 VIA NET BANK ATM SYSTEM: DECOMPOSING A USE-CASE SCENARIO WITH
A SEQUENCE DIAGRAM

In previous sections we identified the use case for the bank system. The following
are the low level use cases:

 Deposit Checking

 Deposit savings

 Invalid PIN

 Withdraw Checking

 Withdraw More from Checking

 Withdraw Savings

 Withdraw Savings Denied

 Checking Transaction History

 Savings Transaction History.

Let us create sequence/collaboration diagrams for the following use cases:

 Invalid PIN Use Case.

 Withdraw Checking Use Case

 Withdraw More from Checking Use Case.

Sequence/collaboration diagrams are associated with a use case. To create a
sequence you must think about the classes that probably will be involved in a use
case scenario.

Consider how to prepare a sequence diagram for Invalid PIN use case. The
sequence of activities that the actor Bank client performs:

 Insert ATM Card.

 Enter PIN number.

 Remove the ATM Card.

 Object-Oriented Analysis

191

The Sequence Figure for the Invalid PIN use case is as follows:

Figure 9

The Sequence Figure for the Withdraw Checking use case is as follows:

Figure 10

The Collaboration Figure for the Withdraw Checking use case is given in figure 11:

Figure 11

 System Analysis and Design

192

The Sequence Figure for the Withdraw more from Checking use case is as follows:

 Figure 12

The Collaboration Figure for the Withdraw More from Checking use case is as
follows:

 Figure 13

3.4 Classes, Responsibilities and Approval Collaborators

Classes, Responsibilities, and Collaborators (CRC) is a technique used for
identifying responsibilities of classes and therefore their attributes and methods.
Classes, responsibilities, and collaborators can help us identify classes. CRC is a
teaching technique than a method for identifying classes. Classes,
Responsibilities, and collaborators is based on the idea that an object either can
accomplish a certain responsibility itself or it may require the assistance of other
objects. By identifying an object’s responsibilities and collaborators its attributes
and methods can be identified.

 Object-Oriented Analysis

193

Classes, Responsibilities, and Collaborators cards are 4'' 6'' index cards. All the

information for an object is written on a card, which is cheap, portable, readily

available and familiar. The class name should appear in the upper left-hand corner,

a bulleted list of responsibilities should appear in the left two thirds of the card,

and the list of collaborators should appear in the right third. It is shown in the

figure given below.

Figure 14

CRC Process

The Classes, Responsibilities, and Collaborators process consists of three steps:

1. Identify classes’ responsibilities.

2. Assign responsibilities.

3. Identify collaborators.

Figure 15

Classes are identified and grouped by common attributes, which also provides

candidates for superclasses. The class names are written onto Classes,

Responsibilities, and Collaborators cards. The application’s responsibilities are

examined for actions and information associated with each class to find the

responsibilities of each class. Next, the responsibilities are distributed. The idea in

locating collaborators is to identify how classes interact.

3.4.1 THE VIA NET BANK ATM SYSTEM: IDENTIFYING CLASSES BY USING
CLASSES, RESPONSIBILITIES, AND COLLABORATORS

We have already identified the initial classes of the bank system. The objective of

this example is to identify objects’ responsibilities such as attributes and methods

in that system. Account and Transaction provide the banking model. Note that

Transaction assumes an active role while money is being dispensed and a passive

role thereafter.

The class Account is responsible mostly to the BankClient class and it collaborates

with several objects to fulfill its responsibilities. Among the responsibilities of the

Account class to the BankClient class is to keep track of the BankClient balance,

account number, and other data that need to be remembered. These are the

attributes of the Account class. The Account class provides certain services or

 System Analysis and Design

194

methods such as means for BankClient to deposit or withdraw an amount and

display the account’s Balance. It is shown in the following table:

Table

Classes, Responsibilities, and Collaborators encourage team members to pick up
the card and assume a role while “executing” a scenario. In similar fashion, other
cards for the classes have been identified with the list of their responsibilities and
their collaborators.

Start with few cards (classes) then implement “what if”. If the situation calls for a
responsibility not already covered by one of the objects, either add the
responsibility to an object or create a new object to address that responsibility. If
one of the objects becomes too cluttered during this process, copy the information
on its card to a new card, searching for more concise ways of saying what the
object does. If it is not possible to shrink the information further and the object is
still too complex, create a new object to assume some of the responsibilities.

3.5 Class Relationships
In an object-oriented environment, objects take an active role in a system. All
objects stand in relationships to others on whom they rely for services and control.
The relationship among objects is based on the assumptions each makes about the
other objects, including what operations can be performed and what behavior
results. Three types of relationships among objects are:

 Association: This defines association between objects that will be used in
designing classes.

 Super-sub Structure: This defines the organization of objects into super
classes and subclasses, proving a base for inheritance.

 Aggregation and A-part-of Structure: This defines the composition of
complex classes which would provide a mechanism for managing an object
within another object.

3.5.1 ASSOCIATIONS
The relationship between the concepts/objects is actually called ‘Association’.
Association is used to show how two classes are related to each other. Association
is stronger than a ‘dependency’ relationship. Associations are modeled as lines
connecting the two classes whose instances (objects) are involved in the
relationship.

Notation for associations

 Multiplicity A Label Multiplicity B

 role A role B

Identifying Associations
A relationship should exist if a class:

– Controls

– is connected to

– is related to

– is a part of

– is a member of

– has as parts some other class in a given model.

Class A Class B

 Object-Oriented Analysis

195

Guidelines for Identifying Associations
The following are general guidelines for identifying the tentative associations:

 A dependency between two or more classes may be an association.
Association often corresponds to a verb or prepositional phrase, such as part
of, next to, works for, or contained in.

 A reference from one class to another is an association.

Common Association Patterns
The common association patterns are based on some of the common associations
defined by researchers and practitioners:

 Location Association – next to, part of, contained in. The a-part-of relation is
a special type of association.

 Communication Association – talk to, order to.

These associations’ patterns and similar ones can be stored in the repository and
added to as more patterns are discovered.

Eliminating Unnecessary Associations

 Implementation Association: Defer implementation-specific associations to
the design phase. Implementation associations are concerned with the
implementation or design of the class within certain programming or
development environments and not relationships among business objects.

 Ternary Associations: Ternary association is an association between more
than two classes.

 Directed Actions Association: Directed actions associations can be defined in
terms of other associations. Since they are redundant, avoid these types of
association.

3.5.2 SUPER-SUB CLASS RELATIONSHIPS
The super-sub class relationship represents the inheritance relationships between
related classes, and the class hierarchy determines the lines of inheritance between
classes. Class inheritance is useful for a number of reasons. Super-sub class
relationships, also known as generalization hierarchy, allow objects to be built
from other objects. The super-sub class hierarchy is a relationship between classes,
where one class is the parent class of another class. The real advantage of using
this technique is that we can build on what we already have and more importantly
reuse what we already have. Inheritance allows classes to share and reuse
behaviors and attributes.

Guidelines for Identifying Super – Sub Class Relationships
 Top-down: Look for noun phrase composed of various adjectives in a class

name. Avoid excessive refinement. Specialize only when the subclasses have
significant behavior.

 Bottom-up. Look for classes with similar attributes or methods. It is possible
to group them by moving the common attributes and methods to an abstract
class.

 Reusability: Move attributes and behaviors as high as possible in the
hierarchy. At the same time, do not create very specialized classes at the top
of the hierarchy.

 Multiple Inheritance: Avoid excessive use of multiple inheritance. It brings
with it complications such as how to determine which behavior to get from
which class, particularly when several ancestors define the same method. One
way of achieving the benefits of multiple inheritance is to inherit from the
most appropriate class and add an object of another class as attribute.

 System Analysis and Design

196

3.5.3 A-PART-OF RELATIONSHIPS – AGGREGATION

A-part-of relationship, also called aggregation, represents the situation where a
class consists of several component classes. A class that is composed of other
classes does not behave like its parts. Aggregation is the whole-part or
assembly-part relationship. It is shown by a straight line with a diamond towards
the “whole”. The relationship between human body and human leg is an
aggregation relationship. Similarly, the relationship between a company and its
departments, department and its employee are also aggregation relationships.

Properties

1. Transitivity: The property where, if A is part of B and B is part of C, then A
is part of C.

2. Antisymmetry: The property of a-part-of relation, where if A is part of B,
then B is not part of A.

A-part-of Relationship Patterns

 Assembly: An assembly is constructed from its parts and an assembly-part
situation physically exits.

 Container: A physical whole encompasses but is not constructed from
physical parts.

 Collection-member: A conceptual whole encompasses parts that may be
physical or conceptual.

3.5.4 CASE STUDY: RELATIONSHIP ANALYSIS FOR VIA-NET-BANK ATM SYSTEM

To understand object relationship analysis, we use the familiar bank system case
and apply the concepts for identifying associations, super-sub relationships, and a-
part of relationships for the classes identified in previous sections.

Initially, requirement specification is understood. Object-oriented analysis and
design are performed in an iterative process using class diagrams. Analysis is
performed on a system, design details are added to this partial analysis model, and
then the design is implemented. Changes can be made to the implementation and
brought back into the analysis model to continue the cycle. This iterative process is
not like the traditional waterfall technique, in which analysis is completed before
design begins.

Identifying Classes’ Relationships

One of the strengths of object-oriented analysis is the ability to model objects as
they exist in the real world. It is also necessary to model how objects relate to each
other. Several different relationships exist in the Via Net bank ATM system, which
we need to define.

Developing a UML Class Diagram based on the Use-Case Analysis

The UML class diagram is the main static analysis and design diagram of a
system. The analysis generally consists of the following class diagrams:

 One class diagram for the system, which shows the identity and definition of
classes in the system, their interrelationships, and various packages
containing groupings of classes.

 Multiple class diagrams that represent various pieces, or views, of the system
class diagram.

 Multiple class diagrams that show the specific static relationships between
various classes.

First, we need to create the classes that are shown in figure 17 and then add the
relationships.

 Object-Oriented Analysis

197

Figure 17

Defining Association Relationships

Identifying association begins by analyzing the interactions of each class.
Remember that any dependency between two or more classes is an association.
The following are general guidelines for identifying the tentative associations:

 Association often corresponds to verb or prepositional phrases, such as part
of, next to, works for, or contained in.

 A reference from one class to another is an association. Some associations
are implicit or taken general knowledge.

Some common patterns of associations are:

 Location Association: For example, next to, part of, contained in (notice that
a-part-of relation is a special type of association).

 Directed Actions Association: They are defined in terms of other
associations. For instance,

 Parent of Parent of

 Grand Parent of

 These redundant associations should be done away with.

 Communication Association: For example, talk to, order from.

The first obvious relation is that each account belongs to a bank client since each
BankClient has an account. Therefore, there is an association between the
BankClient and Account classes. We need to establish cardinality among these
classes. By default all associations are considered one-to-one (one client can have
only one account and vice versa). However, since each BankClient can have one or
two accounts, we need to change the cardinality of the association. Other
associations and their cardinalities are defined in the following table and
demonstrated in figure 18.

Some Associations and their Cardinalities in the Bank System

Class Related class Association name Cardinality

Account BankClient Has One

BankClient Account One or two

SavingsAccount CheckingAccount Savings-Checking One

CheckingAccount SavingsAccount Zero or one

Account Transaction Account-Transaction Zero or more

Transaction Account One

Ashok Sushil

Sushil Vijaya

Vijaya

 System Analysis and Design

198

Figure 18

Defining Super-Sub Relationships

Let us review the guidelines for identifying super-sub relationships:

 Top-down: Look for noun phrases composed of various adjectives in the
class name.

 Bottom-up: Look for classes with similar attributes or methods. In most
cases, you can group them by moving the common attributes and methods to
an abstract class.

 Reusability: Move attributes and behaviors (methods) as high as possible in
the hierarchy.

 Multiple Inheritance: Avoid excessive use of multiple inheritance.

Both CheckingAccount and SavingsAccount are types of accounts. They can be
defined as specializations of the Account class. When implemented, the Account
class will define attributes and services common to all kinds of accounts, with
CheckingAccount and SavingsAccount each defining methods that make them
more specialized. Figure 19 depicts the super-sub relationships among Accounts,
SavingsAccount, and CheckingAccount.

Figure 19

Identifying the Aggregation/a-Pat-of Relationship

To identify a-part of structures, we look for the following clues:

 Assembly: A physical whole is constructed from physical parts.

 Container: A physical whole encompasses but is not constructed from
physical parts.

 Collection-Member: A conceptual whole encompasses parts that may be
physical or conceptual.

 Object-Oriented Analysis

199

A bank consists of ATM machines, accounts, buildings, employees, and so forth.

However, since buildings and employees are outside the domain of this

application, we define the Bank class as an aggregation of ATMMachine and

Account classes. Aggregation is a special type of association. Figure 20 depicts the

association, generalization, and aggregation among the bank systems classes.

Figure 20

4. IDENTIFYING ATTRIBUTES AND METHODS

Identifying attributes and methods is like finding classes and an iterative
process. Responsibilities identify problems to be solved. A responsibility serves
as a handle for discussing potential solutions. The responsibilities of an object
are expressed by a handful of short verb phrases, each containing an active verb.
Attributes are things an object must remember such as color, cost, and
manufacturer. Identifying attributes of a system’s classes starts with
understanding the system’s responsibilities.

The following questions help in identifying the responsibilities of classes and
deciding about data elements that need to be kept track of:

 What information about an object should we keep track of?

 What services a class must provide?

Answering the first question will help us identify attributes of a class. Answering
the second question will help us identify the methods of a class.

5. DEFINING ATTRIBUTES BY ANALYZING USE CASES AND OTHER
UML DIAGRAMS

By analyzing the use cases and sequence/collaboration, activity, and state
diagrams, one can know the responsibilities of a class and also the way they
interact in order to perform a task. The goal is to understand what the class
would have to know. Responsible for knowing. An object in an object-oriented
environment; should have the following characteristics:

 How it is going to be used?

 How it is going to collaborate with other classes?

 How it is described in the context of this system’s responsibility?

 What it should know?

 What state information should it remember over time?

 What states can it be in?

 System Analysis and Design

200

Guidelines for Defining Attributes

 Attributes usually correspond to nouns followed by prepositional phrases.

Attributes may also correspond to adjectives or adverbs.

 Keep the class simple; state enough attributes to define the object state.

 Attributes are less likely to be fully described in the problem statement.

 Omit derived attributes.

 Do not carry discovery of attributes to excess.

5.1 Defining Attributes for Via Net Bank Objects

By analyzing the use cases, the sequence/collaboration diagrams, and the activity

diagram it is apparent that, for the BankClient class, the problem domain and the

system dictate certain attributes. By looking at the activity diagram, we notice that

the BankClient must have a PIN number (or password) and Card number.

Therefore, the PIN number and CardNumber are appropriate attributes for the

BankClient.

The attributes of the BankClient are:

 First name

 Last name

 PinNumber

 CardNumber

 Account: Account

Defining Attributes for the Account Class: We have defined the following

attributes for the Account class:

 Number

 Balance

Defining Attributes for the Transaction Class: The Transaction class, for the most

part, must keep track of the time and amount of a transaction. Here are some

attributes for the Transaction class:

 TransID

 TransDate

 TransTime

 TransType

 Amount

 PostBalance

Defining Attributes for the ATMMachine Class: The ATMMachine class could

have the following attributes:

 Address

 State

 Object-Oriented Analysis

201

SUMMARY

 The main objective of analysis is to capture a complete, unambiguous, and

consistent picture of the requirements of the system. The models of the

system concentrate on describing what the system does rather than how the

system does. Separating the behavior of a system from the way it is

implemented requires viewing the system from the perspective of the users

rather than that of the machine.

 Analysis is a creative activity that involves understanding the problem, its

associated constraints, and methods of overcoming those constraints. It is an

iterative process that goes on until the problem is well understood. The main

objective of object-oriented analysis is to find out what the problem is by

developing a use-case model. Jacobson et al. call this “what model”.

 Use cases are an essential tool in capturing requirements. Capturing use cases
is one of the first things to do in coming up with requirements. Every use
case is a potential requirement. A use-case model can be developed by
talking to the users and discussing the various things they might want to do.
Each use case must have a name and short textual description, no more than a
few paragraphs.

 Requirements must be traceable across analysis, design, coding, and testing.
The unified approach follows Jacobson et al., life cycle to produce systems
that can be traced across all phases of the development.

 Finding classes is one of the hardest activities in OOA. We follow four
approaches for identifying the classes. The process of identifying classes can
improve gradually through the incremental process.

 The first method for identifying classes is the noun phrase. Second method is
the common class patterns approach based on the knowledge base of the
common classes proposed by various researchers. Third method is use-case
driven, in this to identify the objects of a system and their behaviors; the
lowest level of executable use case is analyzed with a sequence and
collaboration diagram pair. Last method is Classes, Responsibilities and
Collaborators, which is a useful tool for learning about class responsibilities
and identifying the classes.

 There are three types of relationships among classes i.e., association,
generalization hierarchy, and aggregation. To identify associations, begin by
analyzing the interactions of each class and responsibilities for dependencies.
To identify super-sub relationships, look for noun phrases composed of
various adjectives in the class in top-down analysis. Aggregation represents a
situation where a class comprises several component classes.

 Identifying attributes and methods is like finding classes, a difficult activity
and an iterative process.

Chapter VIII

Object-Oriented Design
After reading this chapter, you will be conversant with:

 Object-Oriented Design Process

 Designing Classes: Refining Attributes

 Designing Methods and Protocols

 Object Storage and Persistence

 User Interface Design

 Object-Oriented Design

203

During the system design phase, strategies that are chosen are implemented in
Object Oriented (OO) design. This phase of object design is the next one to follow
after the analysis and system design; or in other words it is an extension of analysis
phase. The OO design phase adds implementation details such as restructuring
classes for efficiency, internal data structures and algorithms to implement
operations, implementation of control, implementation of associations and
packaging into physical modules. OO design phase is iterative where in a number
of classes are added and relationships between objects are defined as one moves
from one level to another of the design phase. Objects that are identified in the
analysis phase are implemented in such a way that memory utilized, execution
time and related costs are minimized by enforcing proper controls.

Object-oriented design requires taking the objects identified during object-
oriented analysis and designing classes to represent them. As a class designer, one
should know the specifics of the class that is being designed. How that class
interacts with other classes should be taken care of. Once classes and their
interactions have been identified, one is ready to design classes. Underlying the
functionality of any application is the quality of its design.

1. OBJECT-ORIENTED DESIGN PROCESS
The object-oriented design process consists of the following activities:

1. Apply design axioms to design classes, their attributes, methods,
associations, structures, and protocols.

 1.1 Refine and complete the static UML class diagram by adding details to
the UML class diagram. This step consists of the following activities:

 1.1.1 Refine attributes.

 1.1.2 Design methods and protocols by utilizing a UML activity
diagram to represent the method’s algorithm.

 1.1.3 Refine associations between classes (if required).

 1.1.4 Refine class hierarchy and design with inheritance (if required).

 1.2 Iterate and refine again.

2. Design the access layer

 2.1 Create mirror classes. For every business class identified and created,
create one access class. For example, if there are three business classes
(Class1, Class2, and Class 3), create three access layer classes
(ClassIDB, Class2DB, and Class3DB).

 2.2 Identify access layer class relationships.

 2.3 Simplify classes and their relationships. The main goal here is to
eliminate redundant classes and structures.

 2.3.1 Redundant classes: Do not keep two classes that perform
similar request and results activities. Simply select one and
eliminate the other.

 2.3.2 Method classes: Revisit the classes that consist of only one or
two methods to see if they can be eliminated or combined with
existing classes.

 2.4 Iterate and refine again.

 System Analysis and Design

204

3. Design the view layer classes.

 3.1 Design the macro level user interface, identifying view layer objects.

 3.2 Design the micro level user interface, which includes these activities:

 3.2.1 Design the view layer objects by applying the design axioms
and corollaries.

 3.2.2 Build a prototype of the view layer interface.

 3.3 Test usability and user satisfaction.

 3.4 Iterate and refine.

4. Iterate and refine the whole design. Reapply the design axioms and, if
needed, repeat the preceding steps.

Utilizing an incremental approach, all stages of software development (analysis,
modeling, designing, and implementation or programming) can be performed
incrementally. Therefore, all the right decisions need not be made up front.

From the UML class diagram, one can begin to extrapolate the classes that have to
be built and also the existing classes that can be reused. If there are a number of
classes that are in some way related to one another, it would be possible to make
them common sub-classes of an existing class. Superclasses can also be generated
by considering the common characteristics. Thus, we can say that a good
object-oriented design is very iterative. Design also must be reflected across
requirements, analysis, design, coding, and testing. The design must progress in
coherent steps from the requirements model.

1.1 Object-Oriented Design Axioms
By definition, an axiom is a fundamental truth that is always observed to be valid
and for which there are no counter exceptions.

Two of the most important Object Oriented Design Axioms are:

 The Independence axiom.

 The Information axiom.

The Independence axiom deals with the relationships between components. One
component should be able to satisfy the requirements without affecting or
influencing another component.

The Information axiom emphasizes the importance of simplicity. Occam’s razor
rule states “The best theory explains the known facts with a minimum amount of
complexity and maximum simplicity and straightforwardness”.

1.2 Corollaries
A collary is a proposition that follows from an axiom or another proposition that
has been proved.

From the two design axioms, many corollaries may be derived as a direct
consequence of the axioms as shown in figure 1. These corollaries may be more
useful in making specific design decisions, since they can be applied to actual
situations more easily than the original axioms. They even may be called design
rules, and all are derived from the two basic axioms. Some of the more important
design corollaries are:

 Uncoupled design with less information content

 Single purpose

 Large number of simple classes

 Strong mapping

 Standardization

 Design with inheritance.

 Object-Oriented Design

205

Figure 1: Relationship between Axioms and Corollaries

Axiom 1

Axiom 2

Corollary 3

Corollary 1

Corollary 2

Corollary 4

Corollary 6 Corollary 5
1.2.1 COROLLARY 1 – UNCOUPLED DESIGN WITH LESS INFORMATION CONTENT

Highly cohesive objects can improve coupling because only a minimal amount of
essential information need to be passed between objects.

Coupling
Coupling is a measure of the strength of association established by a connection
from one object or software component to another. Coupling is a binary
relationship: A is coupled with B. Coupling is important when evaluating a design
because it helps to focus on an important issue in design. For example, a change to
one component of a system should have a minimal impact on other components.
Strong coupling among objects complicates a system, since the class is harder to
understand or highly interrelated with other classes. The degree of coupling is a
function of:

 The complexity of the connection.

 Whether the connection refers to the object itself or something inside it.

 What is being sent or received?

The degree or strength of coupling between two components is measured by the
amount and complexity of information transmitted between them. Strong coupling
complicates a system and increases the complexity or obscurity of the interface.
Coupling decreases when the connection is to the component interface rather than
to an internal component (Encapsulation). Coupling for data connections is lower
than for control connections. Object-oriented design has two types of coupling:
interaction coupling and inheritance coupling.

Interaction coupling involves the amount and complexity of messages between
components. It is desirable to have little interaction. Coupling also applies to the
complexity of the message. The general guideline is to keep the messages as
simple as possible. In general, if a message involves more than three parameters
(e.g., in Method (X, Y, Z), the X, Y, and Z are parameters), it should be examined
to see if it can be simplified. It has been observed that objects connected to
complex messages are tightly coupled, i.e., any change to one invariably leads to a
ripple effect of changes in others. In addition to minimizing the complexity of
message connections, the number of messages sent and received by an object
containing different types of interaction couplings need to be reduced.

Inheritance is a form of coupling between super- and sub-classes. A subclass is
coupled to its superclass in terms of attributes and methods. Unlike interaction
coupling, high inheritance coupling is desirable. To achieve high inheritance
coupling in a system, each specialization class should not inherit lots of unrelated
and unneeded methods and attributes. For example, if the subclass is overwriting
most of the methods or not using them, this is an indication that inheritance
coupling is low and the designer should look for an alternative generalization-
specialization structure.

 System Analysis and Design

206

Cohesion
Coupling deals with interactions between objects or software components. One
also needs to consider interactions within a single object or software component,
called cohesion. Cohesion reflects the “single-purposeness” of an object. Highly
cohesive components can lower coupling because only a minimum of essential
information needs to be passed between components. Cohesion also helps in
designing classes that have very specific goals and clearly defined purposes.

Method cohesion, like function cohesion, means that a method should carry only
one function. A method that carries multiple functions is undesirable. Class
cohesion means that all the class methods are the methods of derived classes.
Inheritance cohesion is concerned with the following questions:

 How interrelated are the classes?

 Does specialization really portray specialization or is it just something
arbitrary?

1.2.2 COROLLARY 2: SINGLE PURPOSE
Each class must have a purpose and it should be clearly defined which is necessary
in the context of achieving the system’s goals. When one documents a class, one
should be able to easily explain its purpose in short. If one cannot, then the class
has to be subdivided into more independent pieces. i.e., it should be kept simple;
and precise. Each method must provide only one service and be of moderate size,
no more than a page.

1.2.3 COROLLARY 3: LARGE NUMBER OF SIMPLER CLASSES, REUSABILITY

The less specialized the classes are, the more likely that future problems can be
solved by recombining existing classes or by adding a minimal number of sub
classes. Smaller classes can be used in a better way by reusing them in other
projects. Large and complex classes are difficult to reuse because of their high
degree of specialilzation. Since object orientation gives special consideration to
encapsulation, modularization and polymorphism, the underlying objective is
reused rather than building a new class.

1.2.4 COROLLARY 4: STRONG MAPPING

Object-oriented analysis and object-oriented design are based on the same model.
As the model progresses from analysis to implementation, more details are added,
but the structure remains the same. For example, during analysis one might
identify a class Employee. During the design phase, one needs to design this class,
i.e., design its methods, its association with other objects, and its view and access
classes. A strong mapping links classes identified during analysis and classes are
designed during the design phase.

The analyst identifies objects’ types and inheritance, and determines the events
that change the state of objects. The designer adds details to this model in the form
of designer screens, user interaction, and client-server interaction. The thought
process flows so naturally from analysis to design that there is a blurred boundary
separating the analysis and design phases.

1.2.5 COROLLARY 5: STANDARDIZATION

To reuse classes, it is necessary to have a good understanding of the development
environment. Most languages come with several built-in class libraries. The
knowledge of existing classes will help in determining what new classes are
needed and where one might inherit useful behaviors rather than to reinvent the
wheel. Documentation regarding class libraries should be up-to-date and easily
navigable. Design patterns might provide a way of capturing, documenting and
storing design knowledge.

 Object-Oriented Design

207

1.2.6 COROLLARY 6: DESIGNING WITH INHERITANCE

When one implements a class, one has to determine its ancestor, what attributes it
will have, and what messages it will understand. Then, one has to construct its
methods and protocols. One will choose inheritance to minimize the amount of
program instructions. Satisfying these constraints sometimes means that a class
inherits from a superclass that may not be obvious at first glance. For example,
say, one is developing an application for a government department that manages
the licensing procedure for a variety of regulated entities.

The design is approved, implementation is accomplished, and the system goes into
production. Till the time the real-world problems do not cross over the boundary
into the system, the design is elegant.

Multiple inheritances bring with them some complications, such as how to
determine which behavior to get from which class, particularly when several
ancestors define the same method. It is also difficult to understand programs written
in a multiple inheritance system. One way of achieving the benefits of multiple
inheritances in a language with single inheritance is to inherit from the most
appropriate class and add an object of another class as an attribute or aggregation.

1.3 Object-Oriented Design Philosophy

Object-oriented development requires one to think in terms of classes. A great
benefit of the object-oriented approach is that classes organize related properties
into units that stand on their own. We go through a similar process as we learn
about the world around us. As new facts are acquired, we relate them to existing
structures in our environment. The activity in designing an application is coming
up with a set of classes that work together to provide the desired functionality.

The first step in building an application should be to design a set of classes, each
of which has a specific expertise and all of which can work together in useful
ways. Applying design axioms and carefully designed classes can have a
synergistic effect, not only on the current system but on its future evolution.

1.4 Designing Classes
Designing classes consists of the followings activities:

1. Apply design axioms to design classes, their attributes, methods,
associations, structures and protocols.

 1.1 Refine and complete the static UML class diagram by adding details to
the UML class diagram. This step consists of the following activities:

 1.1.1 Refine attributes.

 1.1.2 Design methods and protocols by utilizing a UML activity
diagram to represent the method’s algorithm.

 1.1.3 Refine associations between classes (if required).

 1.1.4 Refine class hierarchy and design with inheritance (if required).

 1.2 Iterate and refine again.

Object-oriented design is an iterative process with the design improving at
iteration.

 System Analysis and Design

208

1.5 Class visibility: Designing well-defined Public, Private and
Protected Protocols

In designing methods or attributes for classes, there are two problems:

1. Protocol or interface to the class operations and its visibility.
2. The way of implementing methods.
The protocols, or the messages that a class understands can be hidden from
other objects (private protocol) or made available to other objects (public
protocol). Public protocols define the implementation of an object.
Implementation, by definition, is hidden and beyond the limit of other objects.
It is shown in figure 2 below.

Figure 2

It is important in object-oriented design to define the public protocol between the
associated classes in the application. This is the set of messages that a class of a
certain generic type must understand, although the interpretation and
implementation of each message is up to the individual class.

Classes have a set of methods that it uses only internally, to pass messages to itself.
The private protocol (visibility) of the class includes messages that normally should
not be sent from other objects; it is accessible only to the operations of that class. In
private protocol, only the class itself can use the method.

The public protocol (visibility) defines the stated behavior of the class as a citizen
in a population and is important for users as well as future descendants. It is
accessible to all classes.

The protected protocol (visibility) defines that the subclasses can use the method
in addition to the class itself.

The problem of encapsulation leakage occurs when details about a class’s
internal implementation are disclosed through the interface. As more internal
details become visible, the flexibility to make changes in the future decreases.
If an implementation is completely open, almost no flexibility is retained for
future changes. This situation hampers not only flexibility but also the quality
of the design.

Design the interface between a superclass and its subclass just as the class’s interface
to clients; this is the contract between the super and sub classes. If the interface is not
designed properly, it can lead to violating the encapsulation of the superclass. The
protected portion of the class interface can be accessed only by subclasses.

1.5.1 PRIVATE AND PROTECTED PROTOCOL LAYERS: INTERNAL
Items in these layers define the implementation of the object. Apply the design
axioms and corollaries, especially corollary 1 to decide what should be private –
what attributes? What methods? It is to be noted that highly cohesive objects can
improve coupling because only a minimal amount of essential information need be
passed between objects.

 Object-Oriented Design

209

1.5.2 PUBLIC PROTOCOL LAYERS: EXTERNAL

Items in these layers define the functionality of the object. When designing class
protocols, it is to be noted that:

 Good design allows for polymorphism.

 Not all protocol should be public: again apply design axioms and corollaries.

The following key questions must be answered:

 What are the class interfaces and protocols?

 What public protocol will be used or what external messages must the system
understand?

 What private or protected protocol will be used or what internal messages or
messages from a subclass must the system understand?

2. DESIGNING CLASSES: REFINING ATTRIBUTES

Attributes identified in object-oriented analysis must be refined with an eye on
implementation during this phase. In the analysis phase, the name of the attribute
is sufficient. In the design phase, the detailed information must be added to the
model. The main goal of this activity is to refine existing attributes or add
attributes that can elevate the system into implementation.

2.1 Attribute Types
Attributes represent the state of an object. When the state of the object changes,
these changes are reflected in the value of attributes. The three basic types of
attributes are:

1. Single-value attributes – It has only one value or state. Attributes such as
name, address, or salary are of this type.

2. Multiplicity or multivalued attributes – As the name implies, it can have a
collection of many values at any point in time.

3. Reference or another object, or instance attributes – Instance connection
attributes are required to provide the mapping needed by an object to fulfill
its responsibilities.

2.2 UML Attribute Presentation
The syntax of the UML presentation will be as follows:

 visibility name : type-expression = initial-value

Where visibility is

+ – Public visibility

– Protected visibility

– – Private visibility

Type-expression is a language-dependent specification of the implementation type
of an attribute.

Initial-value is a language-dependent expression for the initial value of a newly
created object.

Multiplicity may be indicated by placing a multiplicity indicator in brackets after
attribute name i.e., names [20]: string.

In the absence of a multiplicity indicator, an attribute holds exactly one value.

 System Analysis and Design

210

2.3 Refining Attributes for the ViaNet Bank objects
We go through the ViaNet Bank ATM system classes and refine the attributes
identified during object-oriented analysis.

2.3.1 REFINING ATTRIBUTES FOR THE BANKCLIENT CLASS

During object-oriented analysis, we identified the following attributes:

 FirstName

 LastName

 PinNumber

 CardNumber

At this stage, we need to add more information to these attributes, such as
visibility and implementation type. Furthermore, additional attributes can be
identified during this phase to enable implementation of the class:

 #firstName: String

 #lastName: String

 #pinNumber: String

 #cardNumber: String

 #account: Account (instance connection)

To design an association between the BankClient and the Account classes, we
need to add an account attribute of type Account, since the BankClient needs to
know about his or her account and this attribute can provide such information for
the BankClient class. This is an example of instance connection, where it
represents the association between the BankClient and the Account objects. All the
attributes have been given protected visibility.

2.3.2 REFINING ATTRIBUTES FOR THE ACCOUNT CLASS
Below given is the refined list of attributes for the Account class:

 #number: String

 #balance; float

 #transaction: Transaction (This attribute is needed for implementing the
association between the Account and Transaction classes).

 #bankClient: BankClient (This attribute is needed for implementing the
association between the Account and BankClient classes).

At this point we must make the Account class very general, so that it can be reused
by the checking and savings accounts.

2.3.3 REFINING ATTRIBUTES FOR THE TRANSACTION CLASS

The attributes for the Transaction class are these:

 #transID: String

 #transDate: Date

 #transTime: Time

 #transType: String

 #amount: float

 #postBalance: float

2.3.4 REFINING ATTRIBUTES FOR THE ATMMACHINE CLASS

The ATMMachine class could have the following attributes:

 #address: String

 #state: String

 Object-Oriented Design

211

2.3.5 REFINING ATTRIBUTES FOR THE CHECKINGACCOUNT CLASS
Add the savings attribute to the class. The purpose of this attribute is to implement
the association between the CheckingAccount and SavingsAccount classes.

2.3.6 REFINING ATTRIBUTES FOR THE SAVINGSACCOUNT CLASS
Add the checking attribute to the class. The purpose of this attribute is to
implement the association between the SavingsAccount and CheckingAccount
classes.

Figure 3: Complete UML Class Diagram

Figure 3 shows a more complete UML class diagram for the bank system. At this
stage, we also need to add a very short description of each attribute or certain
attribute constraints. For example,

Class ATMMachine
#address: String (The address for this ATM machine).

#state: String (The state of operation for this ATM machine, such as running, off,
idle, out of money, security alarm).

3. DESIGNING METHODS AND PROTOCOLS
The goal of this activity is to specify the algorithm for methods identified. Once
methods are designed in some formal structure such as UML activity diagrams
with an OCL description, they can be converted to programming language
manually or in automated fashion. A class can provide several types of methods:

 Constructor: The method that creates instances of the class.

 Destructor: The method that destroys instances.

 Conversion method: The method that converts values from one unit of
measure to another.

 Copy method: The method that copies the contents of one instance to another
instance.

 Attribute set: The method that sets the values of one or more attributes.

 Attribute get: The method that returns the values of one or more attributes.

 I/O method: The method that provides or receives data to or from a device.

 Domain specific: The method specific to the application.

The goal should be to maximize cohesiveness among objects and software
components in order to improve coupling, because only a minimal amount of
essential information should be passed between components.

 System Analysis and Design

212

3.1 Design Issues: Avoiding Design Pitfalls
It is important to apply design axioms to avoid common design problems and
pitfalls. It is possible to gather common pieces of expertise from several classes,
which in itself becomes another “peer” class that others consult; or it is possible to
create a superclass for several classes for whom similar code at a single place. The
aim of the designer is to make reuse existing classes in order to avoid creating new
classes as much as possible.

Another problem with class definitions is that of lost object focus. A meaningful
class definition starts out simple and clean but, as time goes on and changes are
made, becomes larger and larger, with the class identity becoming harder to state
concisely. The documentation part should be able to describe the purpose of a
class in a few sentences.

Following points need to be noted:

 The design of class should be done carefully and at the same time the role of
an object should be well-defined. If the object loses focus, the design needs
to be modified. Apply Corollary 2.

 Some functions need to be moved into new classes that the object would use.
Apply Corollary 1.

 Break up the class into two or more classes. Apply Corollary 3.

 The class definition can be modified based on experience gained.

3.2 UML Operation Presentation
The following operational presentation has been suggested by UML. The
operational syntax is this:

 visibility name: (parameter-list) : return-type-expression

where visibility is one of:

+ public visibility

protected visibility

- private visibility

name is the name of the operation.

parameter-list is the list of parameters, separated by commas, each specified by

name: type-expression = default value

return-type-expression is a language dependent specification of the
implementation of the value returned by the method.

3.3 Designing Methods for the via Net Bank Objects
At this point, the design of the bank business model is conceptually complete. The
objects that make up the business layer as well as what services they provide are
identified. All that remains is to design methods, the user interface, database
access, and implement the methods using any object-oriented programming
language. We represent the methods’ algorithms with UML activity diagrams,
which very easily can be translated into any language. In essence, this phase
prepares the system for the implementation. The actual coding and implementation
should be relatively easy and, for the most part, can be automated by using CASE
tools. It is always difficult to code when we have no clear understanding of what
we want to do.

3.3.1 BANKCLIENT CLASS VERIFYPASSWORD METHOD

A client PIN code is sent from the ATMMachine object and used as an argument
in the verifyPassword method. The verifyPassword method retrieves the client
record and checks the entered PIN number against the client’s PIN number. If they
match, it allows the user to proceed. Otherwise, a message sent to the
ATMMachine displays “Incorrect PIN, please try again”.

 Object-Oriented Design

213

Figure 4

The verifyPassword method first creates a bank client object and then attempts to
retrieve the client data based on the supplied card and PIN numbers.

3.3.2 ACCOUNT CLASS DEPOSIT METHOD

An amount to be deposited is sent to an account object and used as an argument
to the deposit service. The account adjusts its balance to its current balance plus
the deposit amount. The amount object records the deposit by creating a
transaction object containing the date and time, posted balance, and transaction
type and amount.

Figure 5

3.3.3 ACCOUNT CLASS WITHDRAW METHOD

It is designed to be inherited by the CheckingAccount and SavingsAccount
classes to implement automatic funds transfer. The following describes the
withdraw method.

An amount to be withdrawn is sent to an account object and used as the argument
to the withdraw service. The account checks its balance for sufficient funds. If
enough funds are available, the account makes the withdrawal and updates its
balance; otherwise, it returns an error, saying “insufficient funds”. If successful,
the account records the withdrawal by creating a transaction object containing date
and time, posted balance, and transaction type and amount.

Figure 6

 System Analysis and Design

214

3.3.4 ACCOUNT CLASS CREATETRANSACTION MEHTOD
The createTransaction method generates a record of all transactions performed
against it. The description is as follows: Each time a successful transaction is
performed against an account, the account object creates a transaction object to
record it. Arguments into this service include transaction type (withdrawal or
deposit), the transaction amount, and the balance after the transaction. The account
creates a new transaction object and sets its attributes to the desired information.
Add this description to the createTransaction’s description field.

Figure 7

3.3.5 CHECKING ACCOUNT CLASS WITHDRAW METHOD
It takes into consideration the possibility of withdrawing excess funds from a
companion savings account. The process will be as follows (figure 8): An amount
to be withdrawn is sent to a checking account and used as the argument to the
withdrawal service. If the account has insufficient funds to cover the amount but
has a companion savings account, it tries to withdraw the excess from there. If the
companion account has insufficient funds, this method returns the appropriate
error message. If the companion account has enough funds, the excess is
withdrawn from there, and the checking account balance becomes zero (0). If
successful, the account records the withdrawal by creating a transaction object
containing the date and time, posted balance, and the transaction type and amount.

Figure 8

4. OBJECT STORAGE AND PERSISTENCE
A program will create a large amount of data throughout its execution; each item of
data will have a different lifetime. These lifetimes are categorized into six, namely:
1. Transient results to the evaluation of expressions.
2. Variables involved in procedure activation (parameters and variables with

a localized scope).

 Object-Oriented Design

215

3. Global variables and variables that are dynamically allocated.

4. Data that exist between the executions of a program.

5. Data that exist between the versions of a program.

6. Data that outlive a program.

The first three categories are transient data, data that cease to exist beyond the
lifetime of the creating process. The other three are non-transient, or
persistent, data.

Programming languages provide excellent, integrating support for the first three
categories of transient data. The other three categories can be supported by a
DBMS or a file system.

Objects have a lifetime and are created explicitly to exist for a period of time
(during the application session). An object can persist beyond application session
boundaries, during which the object is stored in a file or a database. A file or a
database can provide a longer life for objects – longer than the duration of the
process in which they were created. From language perspective, this characteristic
is called persistence. Essential elements in providing a persistent store are:

 Identification of persistent objects or reachability (object ID).

 Properties of objects and their interconnections. The store must be able to
co-herently manage non-pointer and pointer data.

 Scale of the object store. The object store should provide a conceptually
infinite store.

 Stability. The system should be able to recover from unexpected failures and
return to a recent self-consistent state.

An Object-Oriented Database Management System (OODBMS) is a system that
provides database-like support for objects (i.e., encapsulation and operations). It is
a persistent, shareable repository, and manager of an object-oriented database.
The database itself is a collection of objects defined by an object-oriented data
model (objects that capture the semantics of objects supported in object-oriented
programming). While semantic models are oriented towards structural abstraction
and data representation, object-oriented models are concerned with behavioral
abstraction and data manipulation.

An OODBMS attempts to extend flexibility to “unconventional” data and
associated processing tasks (including text, graphics, and voice data) that cannot
be handled and integrated by conventional database systems.

The basic idea of an object-oriented database is to represent an item in the real
world with a corresponding item in the database. Coupling an object-oriented
database with an object-oriented programming style results in the virtual
elimination of the semantic gap between a program and its supporting data. Three
levels of “object orientation” have been defined by Dittrich and Manola:

 Structurally object-oriented: The data model allows definitions of data
structures to represent entities of any complexity (complex objects).

 Operationally object-oriented: The data model includes generic operators to
deal with complex objects in their entirety.

 Behaviorally object-oriented: The data model incorporates features to define
arbitrarily complex object types together with a set of specific operators
(abstract data types). Instances can only be used to call these operators.

Key features of systems that truly support the object-oriented philosophy as
described by Cox:

 Inheritance: Instance variables, class variables and methods are passed
down from a superclass to its subclasses. A technique that allows new
classes to be built on top of older, less specialized classes instead of being
rewritten from scratch.

 System Analysis and Design

216

 Information Hiding: The state of a software module is contained in private
variables, visible only from within the scope of the module. Important for
ensuring reliability and modifiability of software systems by reducing
inter-dependencies between components.

 Dynamic Binding: The responsibility for executing an action on an object
resides with the object itself. The same message can elicit a different
response depending upon the receiver.

 Encapsulation: A technique for minimizing interdependencies among
separately written modules by defining strict external interfaces. The
consumer no longer applies operators to operands while taking care that the
two are type compatible.

 Data Abstraction: The behavior of an abstract data object is fully defined by
a set of abstract operations defined on the object. Objects in most object-
oriented languages are abstract. Data abstraction can be considered as a way
of using information hiding.

 Object Identity: Each object has a unique identifier independent of the values
of properties.

Other notions currently associated with the object-oriented approach include
messages, overloading, late binding, and interactive interfaces with windows,
menus and mice.

4.1 Advantages
Object-oriented programming and database management systems offer a number
of important advantages over traditional control/data oriented techniques,
including, as described by Manola, King and Thomas:

 The modeling of all conceptual entities with a single concept, the object.

 The notion of a class hierarchy and inheritance of properties along the
hierarchy.

 The inheritance mechanism of object-oriented languages which allows code
to be reused in a convenient manner.

 Facilitates the construction of software components that loosely parallel the
application domain.

 Encourages the use of modular design.

 Provides a simple and expressive model for the relationship of various parts
of the system’s definition and assists in making components reusable or
extensible.

 Views a database as a collection of abstract objects, rather than a set of flat
(though possibly interrelated) tables.

 Captures integrity constraints more easily.

 Offers a unifying paradigm in the database, programming language, and
artificial intelligence domains.

 The ability to represent and reference objects of complex structures resulting
in increased semantic content of databases.

 Provides a more flexible modeling tool.

 Allows protection and security mechanisms to be based on the notion of an
object, a more natural unit of access control.

 Can provide version control functions.

 Incorporation of software engineering principles such as data abstraction and
information hiding.

 Object-Oriented Design

217

4.2 Disadvantages
Despite its many advantages, the object-oriented view is not perfect. Though there
are several drawbacks to OO systems as listed below, most are a direct result of its
relative infancy and lack of development. Most of these problems are expected to
be resolved as the model matures:

 The object-oriented paradigm lacks a coherent data model. There is currently
no established standard for object-oriented design, methodology, language
facilities, etc.

 Research into the structures for efficient object storage is in the early stages.

 Use of an object-oriented database from a conventional data processing
language is difficult because of the semantic gap.

 In current environments, the run-time cost of using object-oriented languages
is high.

 Object-oriented database management systems provide only limited support
for integrating data in existing, possibly heterogeneous, databases.

 Typical OODBMS’s do not integrate existing database application code with
the object methods maintained by the system. This is similar to the previous
point but concerns procedures rather than data.

 Many object-oriented database systems do not support the strict notion of
metaclass.

 Some OODBMS’s do not emphasize the efficient processing of set-oriented
queries, although most of the commercial OODBMS’s provide some form of
query facility.

 Object-Oriented Programming/Processing (OOP) can be very memory
intensive.

 There is no adequate, accepted, standard query language based on the OO
view of data.

Many of these issues are well on their way to resolution. For example, the Unified
Modeling Language (UML) seems to be emerging as a standard, filling the gap
mentioned in the first bullet above. The OO concept has already made great
strides. As the paradigm matures, most, if not all, of these issues are expected to
be resolved.

5. USER INTERFACE DESIGN
Once the analysis is complete, we can start designing the user interface for the
objects and determine how these objects are to be presented. The goal of User
Interface (UI) is to display and obtain needed information in an accessible, and
efficient manner. A design is required to provide users the information they need
and clearly tell them how to successfully complete a task. A well designed UI has
visual appeal that motivates users to use the application. It should use the limited
screen space efficiently.

5.1 Designing View Layer Classes
The distinguishing characteristic of view layer objects or interface objects is that
they are the only exposed objects of an application with which users can interact.
View layer classes or interface objects are objects that represent the set of
operations in the business that users must perform to complete their tasks. Objects
that have direct contact with the outside world are visible in interface objects.

The view layer objects are responsible for two major aspects of the applications:

 Input – Responding to user interaction: The user interface must be designed
to translate an action by the user, such as clicking on a button or selecting
from a menu, into an appropriate response. That response may be to open or
close another interface or to send a message down into the business layer to
start some business process.

 Output – Displaying or printing business objects: This layer must paint the
best picture possible of the business objects for the user.

 System Analysis and Design

218

The process of designing view layer classes is divided into four major activities:

i. Macro Level UI Design Process – Identifying View Layer Object: This
activity, for the most part, takes place during the analysis phase of system
development. The main objective of the macro process is to identify classes
that interact with human actors by analyzing the use cases developed in the
analysis phase. Each use case involves actors and the task they want the
system to do. These use cases should capture a complete, unambiguous, and
consistent picture of the interface requirements of the system. Use cases
concentrate on describing what the system does rather than how it does it by
separating the behavior of a system from the way it is implemented, which
requires viewing the system from the user’s perspective rather than that of the
machine. In this phase, one also needs to address, the issue of how the
interface must be implemented. Sequence or collaboration diagrams can help
by allowing zooming in on the actor-system interaction and extrapolating
interface classes that interact with human actors; thus, assisting in identifying
and gathering the requirements for the view layer objects and designing them.

ii. Micro Level UI Design Activities:

 Designing the View Layer Objects by Applying Design Axioms and
Corollaries: In designing view layer objects, how to use and extend the
components are decided, so that they best support application-specific
functions and provide the most usable interface.

 Prototyping the View Layer Interfac: After defining design model, a
prototype of some of the basic aspects of the design is prepared.
Prototyping is particularly useful early in the design process.

iii. Testing Usability and User Satisfaction: “One must test the application to
make sure it meets the audience requirements. To ensure user satisfaction,
one must measure user satisfaction and its usability along the way as the UI
design takes form. Usability experts agree that usability evaluation should be
part of the development process rather than a post-mortem or forensic
activity. Despite the importance of usability and user satisfaction, many
system developers still fail to pay adequate attention to usability, focusing
primarily on functionality.

iv. Refining and Iterating the Design: This activity is essential in order to
incorporate any changes suggested by the users.

5.2 Macro-Level Process: Identifying View Classes by Analysing Use
Cases

The interface object handles all communication with the actor but processes no
business rules or object storage activities. The interface object will operate as a
buffer between the user and the rest of the business objects. The interface object is
responsible for behavior related directly to the tasks involving contact with actors.
Interface objects are unlike business objects, that lie inside the business layer and
involve no interaction with actors. For example, computing employee overtime is
an example of a business object service. The data entry for the employee overtime
is an interface object.

The interface object in the process, has responsibility for those tasks that come into
direct contact with the user. The first step is to begin with the use cases, which
help to understand the users’ objectives and tasks. Different users have different
needs; for example, advanced, or “power”, users want efficiency whereas other
users may want ease of use. Similarly, ones with disabilities or in an international
market have still different requirements. The challenge is to provide efficiency for
advanced users without introducing complexity for less-experienced ones.
Developing use cases for advanced as well as less-experienced users might lead to
solutions such as developing shortcuts to support more advanced users.

 Object-Oriented Design

219

The view layer macro process consists of two steps:

1. For every class identified, it is determined whether the class interacts with
human actor. If so, the following is performed; otherwise, it is moved to the
next class:

 Identify the view (interface) objects for the class: Zoom in on the view
objects by utilizing sequence or collaboration diagrams to identify the
interface objects, their responsibilities, and the requirements for this class.

 Define the relationships among the view (interface) objects: The interface
objects, like access classes, for the most part, are associated with the busi-
ness classes. Therefore, one can let business classes guide in defining the
relationships among the view classes. Furthermore, the same rule as
applies in identifying relationships among business class objects also
applies among interface objects.

2. Iterate and Refine: The advantage of utilizing use cases in identifying and
designing view layer objects is that the focus centers on the user, and
including users as part of the planning and design is the best way to ensure
that they are important players in the design of objects. After identifying
the interface objects, it is necessary to identify the basic components or
objects used in the user tasks and the behavior and the characteristics that
differentiate each kind of objects, including the relationships of interface
objects to one another and to the user. The relationships among view class
and business class objects is opposite of that among business class and
access class objects. The interface object handles all communication with
the user but does not process any business rules; that will be done by the
business objects.

Effective interface design is more than just following a set of rules. It also involves
early planning of the interface and continued work through the software
development process. The process of designing the user interface involves
clarifying the specific needs of the application, identifying the use cases and
interface objects, and then devising a design that best meets users’ needs.

Figure 9: The Macro Level Design Process

5.3 Micro Level Process
A user-centered interface replicates the user’s view of doing things by providing
the outcomes users expect for any action. For example, the goal of the
relationships among business, access, and view objects. In some situations the
view class can become a direct aggregate of the access object, as when designing a
Web interface that must communicate with an application/Web server through
access objects.

 System Analysis and Design

220

Application is to automate what was a paper process, and then the tool should be
simple and natural. Design the application so that it allows users to apply their
previous real-world knowledge of the paper process to the application interface.
The design then can support this work environment and goal. The main goal of
view layer design is to address users’ needs.

The following is the process of designing view (interface) objects:

1. For every interface object identified in the macro UI design apply micro-level
UI design rules and corollaries to develop the UI. Apply design rules and
GUI guidelines to design the UI for the interface objects identified.

2. Iterate and refine.

Figure 10

5.4 The Purpose of a View Layer Interface
UI can employ one or more windows. Each window should serve a clear and
specific purpose. These are commonly used for the following purposes:

 Forms and Data Entry Windows: Data entry windows provide access to data
that users can retrieve, display, and change in the application. If a window
serves multiple purposes, create a separate one for each.

 Dialog Boxes: It displays status information to ask users to supply
information or make a decision before continuing with a task.

 Application Window: An application window is a container of application
objects or icons.

5.4.1 PROTOTYPING THE USER INTERFACE

Rapid prototyping encourages the incremental development approach. Prototyping
involves a number of iterations. Through each iteration, we add a little more to the
application, and as we understand the problem a little better, we can make more
improvements.

Visual and rapid prototyping is a valuable asset in many ways. First it provides an
effective tool for communicating the design. Second, it helps to define task flow
and better visualize the design. Finally, it provides a low-cost vehicle for getting
user input on a design.

Creating a user interface generally consists of three steps:

1. Create the user interface objects.

2. Link or assign the appropriate behaviors or actions to these user interface
objects and their events.

3. Test, debug and then add more by going back to step 1.

 Object-Oriented Design

221

Figure 11

5.5 Case Study: Designing User Interface for the ViaNetBank ATM
Here, we are designing a GUI interface for the ViaNet Bank ATM for two reasons:

1. The ViaNet bank wants to deploy touch-screen instead of conventional ATM
machines.

2. In the near future, ViaNet wants to create on-line banking, where customers
can be connected electronically to the bank via Internet and conduct most of
their banking needs.

5.5.1 The View Layer Macro Process
The first step here is to identify the interface objects, their requirements, and their
responsibilities by applying the macro process to identify the view classes. When
creating user interfaces for a business model, it is important to remember the role
that view objects play in an application. The interface should be designed to give
the user access to the business process modeled in the business layer.

For every class identified (so far we have identified the following classes:
Account, ATMMachine, Bank, BankDB, CheckingAccount, SavingsAccount, and
Transaction),

 Determine if the class interacts with a human actor. The only class that
interacts with a human actor is ATMMachine.

 Identify the interface objects for the class. The next step is to go through the
sequence and collaboration diagrams to identify the interface objects, their
responsibilities and the requirements for this class.

We have already identified the scenarios or use cases for the ViaNet bank. The
various scenarios involve CheckingAccount, SavingsAccount, and general bank
Transactions (see figures). These use cases interact directly with actors:

1. Bank transaction

2. Checking transaction history

3. Deposit checking

4. Deposit savings

5. Savings transaction history

6. Withdraw checking

7. Withdraw savings

8. Valid/invalid PIN

 System Analysis and Design

222

Based on these use cases, we have identified eight view or interface objects. The
sequence and collaboration diagrams can be very useful here to help us better
understand the responsibility of the view layer objects. To understand the
responsibilities of the interface objects, we need to look at the sequence and
collaboration diagrams and study the events that these interface objects must
process or generate. Such events will tell us the makeup of these objects. For
example, the PIN validation user interface must be able to get a user’s PIN number
and check whether it is valid.

Define Relationships among View (Interface) Objects

Now, we need to identify the relationships among these view objects and their
associated business classes.

So far, we have identified eight view classes:

1. AccountTransactionUI (for a bank transaction)

2. CheckingTransactionHistoryUI

3. SavingsTransactionHistoryUI

4. BankClientAccessUI (for validating a PIN code)

5. DepositCheckingUI

6. DepositSavingsUI

7. WithdrawCheckingUI

8. WithdrawSavingsUI.

The first three transaction view objects basically do the same thing; display the
transaction history on either a checking or savings account. Therefore, we need
only one view class for displaying transaction history, and let us call it
AccountTransactionUI.

The AccountTransactionUI view class is the account transaction interface that
displays the transaction history for both savings and checking accounts. The
following figure depicts the relation between the AccountTransactionUI and the
account class. The relationship between the view class and business object is
opposite of that between business class and access class. We know that the
interface object handles all communications with the user but processes no
business rules and lets that work be done by the business objects themselves. In
this case, the account class provides the information to AccountTransactionUI for
displaying to the users (figure 12).

Figure 12

 Object-Oriented Design

223

The BankClientAccessUI view class provides access control and PIN code
validation for a bank client. It is shown in the following figure:

Figure 13

The four remaining view objects are the DepositCheckingUI view class (interface
for deposit to checking accounts), DepositSavingsUI view class (interface for
deposit to savings accounts), WithdrawSavingsUI view class (interface for
withdrawal from savings accounts), and WithdrawCheckingUI view class
(interface for withdrawal from checking accounts).

Iterate and Refine

This is the final step. Through the iteration and refinement process, we notice that
the four classes DepositCheckingUI, DepositSavingsUI, WithdrawSavingsUI, and
WithdrawCheckingUI basically provide a single service, which is getting the
amount of the transaction (whether the user wants to withdraw or deposit) and
sending appropriate message to SavingsAccount or CheckingAccount business
classes. Therefore, they are good candidates to be combined into two view classes,
one for CheckingAccount and one for SavingsAccount (by following UI rule 3).
Both CheckingAccountUI and SavingsAccountUI allow users to deposit money to
or withdraw money from checking and savings accounts.

The CheckingAccountUI view class provides the interface for a checking account
deposit or withdrawal. The SavingsAccountUI view class provides the interface
for a savings account deposit or withdrawal. These two view classes are shown in
the following figure:

Figure 14

Finally, we need to create one more view class that provides the main control or
the main UI to the ViaNet bank system. The MainUI view class provides the main
control interface for the ViaNet bank system.

5.5.2 THE VIEW LAYER MICRO PROCESS
Based on the outcome of the macro process, we have the following view classes:

1. BankClientAccessUI

2. MainUI

3. AccountTransactionUI

 System Analysis and Design

224

4. CheckingAccountUI

5. SavingsAccountUI.

For every interface object identified in the macro UI design process,

 Apply micro-level UI design rules and corollaries to develop the UI. We need
to go through each identified interface object and apply design rules (such as
making the UI simple, transparent, and controlled by the user) and GUI
guidelines to design them.

 Iterate and refine.

5.5.3 THE BANKCLIENTACCESSUI INTERFACE OBJECT

The BankClientAccessUI provides clients access to the system by allowing them to
enter their PIN for validation. The BankClientAccessUI is designed to work with a
card reader device, where the user can insert the card and the card number should be
displayed automatically in the card number field. In a situation where there is no
card reader, such as on-line banking (e.g., user wants to log onto the system from
home), the user must enter his or her card number. This is shown in figure 15.

Figure 15

5.5.4 THE MAINUI INTERFACE OBJECT

The MainUI provides the main control to the ATM services. Users can select to
deposit money to savings or checking account, withdraw money from savings or
checking account, inquire as to a balance or transaction history, or quit the session.
This is shown in figure 16.

Figure 16

5.5.5 THE ACCOUNTTRANSACTIONUI INTERFACE OBJECT
The AccountTransactionUI interface object will display the transaction history of
either a savings or checking account. The user must select the account type by
pressing the radio buttons. Figure 17 below display the account balance inquiry
and transaction history interface.

Figure 17

 Object-Oriented Design

225

5.5.6 DEFINING THE INTERFACE BEHAVIOR
The role of a view layer object is to allow the users to manipulate the business
model. The actions a user takes on a screen should be translated into a request to
the business object for some kind of processing. When the processing is
completed, the interface can update itself by displaying new information, opening
a new window, or the like.

Defining behavior for an interface consists of identifying the events to which you
want the system to respond and the actions to be taken when the event occurs.
Both GUI and business objects can generate events when something happens to
them (for example, a button is pushed or a client’s name changes). In response to
these events, one can take requisite actions. An action is a combination of an
object and a message sent to it.

5.5.7 IDENTIFYING EVENTS AND ACTIONS FOR THE BANKCLIENTACCESSUI
INTERFACE OBJECT

When the user inserts his or her card, types in a PIN, and presses the OK button,
the interface should send the message BankClient::verifyPassword to the object to
identify the client. If the password is found correct, the MainUI should be
displayed and provide users with the ATM services; otherwise, an error message
should be displayed. The UML activity diagram of BankClientAccessUI events
and actions are shown in figure 18.

Figure 18

5.5.8 IDENTIFYING EVENTS AND ACTIONS FOR THE MAINUI INTERFACE OBJECT

From this interface, the user should be able to do the following:

 Deposit into the checking account by pressing the Deposit Checking button.

 Deposit into the savings account by pressing the Deposit Savings button.

 Withdraw from the savings account by pressing the Withdraw Savings button.

 Withdraw from the checking account by pressing the Withdraw Checking
button.

 View balance and transaction history by pressing the Balance Inquiry button.

 Exit the ATM by pressing Done.

Figure 19 shows the MainUI events and actions.

Figure 19

 System Analysis and Design

226

5.5.9 IDENTIFYING EVENTS AND ACTIONS FOR THE SAVINGSACCOUNTUI
INTERFACE OBJECT

The SavingsAccountUI has two tabs. First, the SavingsAccountUI opens the
appropriate tab. For example, if the user selects the Deposit Savings from the
MainUI, the SavingsAccountUI will display the Deposit Savings tab. Figure 20
shows the deposit savings.

Figure 20

5.5.10 IDENTIFYING EVENTS AND ACTIONS FOR THE ACCOUNTTRANSACTIONUI
INTERFACE OBJECT

A user can select either savings or checking account by pressing on the Savings

or Checking radio button. The system then will display the balance and

transaction history for the selected account type. The default is the checking

account, so when the AccountTransactionUI window is opened for the first time,

it will show the checking account history. Pressing on the savings account radio

button will cause it to display the savings account balance and history. To close

the display and get back to MainUI, the user presses the Done button. This is

shown in figure 21.

Figure 21

Notice that here we are assuming that the account has a method called

displayTrans, which takes a string parameter for type of account (Savings or

Checking) and retrieves the appropriate transaction. Since we did not identify or

design it, we need to develop it here. This occurs quite often during software

development, which is why the process is iterative.

 Object-Oriented Design

227

SUMMARY

 A model is a simplified representation of reality, simplified because reality is
too complex or large and much of the complexity actually is irrelevant to the
problem being described or solved.

 The unified modeling language was developed by Booch, Jacobson, and
Rumbaugh. The UML encompasses the unification of their modeling
notations.

 The UML class diagram is the main static structure analysis diagram for the
system. It represents the class structure of a system with relationships
between classes and inheritance structure. The class diagrams are developed
through use-case, sequence and collaboration diagrams.

 The use-case diagram captures information on how the system or business
works or how one wishes it to work. It is a scenario-building approach in
which one models the processes of the system. It is an excellent way to learn
the object-oriented analysis of the system.

 The UML sequence diagram is for dynamic modeling, where objects are
represented as vertical lines and message passed back and forth between the
objects are modeled by horizontal vectors between the objects.

 The UML collaboration diagram is an alternative view of the sequence
diagram, showing in a scenario how objects interrelate with one another.

 State chart diagrams, another form of dynamic modeling, focus on the events
occurring within a single object as it responds to messages; and activity
diagram is used to model an entire business process. Thus, an activity model
can represent several different classes.

 Implementation diagrams show the implementation phase of systems
development, such as the source code and run-time implementation
structures. The two types of implementation diagrams are component
diagrams, which show the structure of the code itself, and deployment
diagrams, which show the structure of the run time system.

 Stereotypes represent a built-in extensibility mechanism of the UML.
User-defined extensions of the UML are enabled through the use of
stereotypes and constraints.

 UML graphical notations can be used not only to describe the system’s
components but also to describe a model itself; this is known as a
meta-model. It is a model of modeling elements. The purpose of the UML
meta-model is to provide a single, common, and definitive statement of the
syntax and semantics of the elements of UML.

Glossary

Actor : An actor is someone or something that interacts with the
system i.e., the actor is a type (a class), not an instance.

Activity Diagram : Activity diagrams are in the form of flow charts that describe
the dynamic nature of a system by modeling the flow of
control from one activity to another.

Attribute : An attribute represents the state of an object.

Association : An association is a relationship between instances of the two
classes.

Aggregations : Aggregations provide a means of showing that the entire object
is composed of the sum of its parts.

Block Sequence Code : In a block sequence code, a series of consecutive numbers
and/or letters is divided into blocks, each one reserved for
identifying a group of items with a common characteristic.

Bottom-up Computer
Program Development

: This is the older method for the development and testing of
computer programs and this method contains a hierarchical
structure within which the lowest level programs are tested
individually and then combined into higher level modules,
which are tested next.

Booch Methodology : It is a widely used object-oriented method that helps to design
the system using the object paradigm. It covers the analysis
and design phases of an object-oriented system.

CASE tool : A CASE tool is a computer-based product aimed at supporting
one or more software engineering activities within a software
development process.

Changeover : Changeover is the process of putting the new security system
online and phasing out the old system. In Parallel changeover,
outputs can be compared to ensure that the new system is
functioning correctly.

Charts : Charts are used to analyze data graphically.

Classes,
Responsibilities and
Collaborators (CRC)

: CRC is a technique used for identifying classes’
responsibilities and their attributes and methods. A class
represents a collection of similar objects, a responsibility is
something that a class knows or does, and a collaborator is
another class that a class interacts with to fulfill its
responsibilities.

Closed Systems : Systems that do not interact with their environment are said to
be closed systems.

Code Dictionary : Code dictionary provides for the translation of a code into the
corresponding data item or can be used to determine of the
code for a particular data item.

Code Plan : Code plan identifies the particular characteristic that needs to
be incorporated within the code.

Cohesion : The term cohesion refers to the strength of dependencies
within a subsystem.

Communication
Process

: Communication process involves sending and receiving
messages i.e., it is the process of transferring information from
one point to another point.

230

Computer Print Chart : A computer print chart is a part of computer printer output and
the detailed description of outputs includes the identification of
the print positions to be used for the title, column headings,
detailed data, and total.

Computer Program
Function

: A function is a part of computer program consisting of a
sequence of steps and it performs a given task and returns the
result to the main program.

Computer Program
Testing

: Computer programs are tested in planned, top-down sequence
that includes structured walk-throughs. The testing continues
until the individual programs can be assembled as a component
that can be tested as a unit.

Computer Output : Anything that comes out of a computer. Output can be
meaningful information or gibberish, and it can appear in a
variety of forms – as binary numbers, as characters, as
pictures, and as printed pages. Output devices include display
screens, loudspeakers and printers.

Context Diagram : It is a data flow diagram showing data flows between a
generalized application within the domain and the other
entities and abstractions with which it communicates.

Control : It is an action taken to bring the difference between an actual
output and a desired output within an acceptable range.

Conversion : Conversion is the process of performing all of the operations
that result directly in the turnover of the new system to user.

Corollary : A corollary is a proposition that follows from an axiom or
another proposition that has been proven.

Coupling : The term coupling refers to the degree of dependency between
two subsystems.

Data Dictionary : It is a catalog or a repository of data about data i.e.,
it describes about the elements in a system.

Database Design : Database design is the process of producing a detailed data
model of a database.

Data Flow Diagram : It is a structured, diagrammatic technique for showing the
functions performed by a system and the data flowing into, out
of, and within it.

Data Stores : These are repositories of data in the system. A data store is
depicted by two parallel lines or open-ended rectangles.

Database Management
System

: A Database Management System (DBMS) is defined as a
collection of interrelated data and a set of programs to access
the data.

Denormalization : It is a process of splitting or combining normalized relations
into physical tables based on affinity of use of rows and fields.

Decision Table : It is a table of possibilities that are to be considered in the
definition of a problem, together with the actions to be taken.

Decision Tree : It is a tree like structure that represents the various conditions
and the subsequent possible actions. It also shows the priority
in which the conditions are to be tested or addressed.

Decision Support
System

: A decision support system is a computer program application
that analyzes business data and presents it so as to make the
job for users much easier in dealing with any business
decision.

231

Design Phase : Design phase is the life-cycle phase in which the detailed
design of the system selected in the study phase is carried out.

Design Specification : Design specifications are the specifications that describe the
features of a system and its components.

Desktop Publishing : Desktop publishing is the use of a personal computer or
workstation to produce high-quality printed documents.

Development Phase : The development phase is the third of the four systems
development life cycle phases. It is the life-cycle phase in
which the system is constructed according to the design
specifications.

Direct Access : Direct access is based on a disk model of a file. For direct
access, the file is viewed as a numbered sequence of blocks or
records.

Ergonomics : The word ergonomics refers to the physical factors of an
information system that affect the performance, comfort, and
satisfaction of direct users.

Error-handling
procedures

: Error-handling procedures are the actions that are taken when
unexpected results occur.

Entity-Relationship (E-
R) Diagram

: It represents entities in the business environment, the
relationships among the entities, and the attributes or
properties of both the entities and their relationships.

Entity-Relationship (E-
R) Model

: It is a conceptual data model that views the real world as
entities and relationships.

Expert System : An expert system is a computer program that simulates the
judgment and behavior of an organization that has expert
knowledge and experience in a particular field.

External Entity : A source or destination of data considered to be external to the
system described.

Fact Finding Technique : The specific methods analysts use for collecting data about
requirements are called fact-finding techniques. It is also
known as information gathering or data collection.

Feasibility Analysis : Feasibility Analysis is the identification of candidate systems
and the selection of the most feasible system.

Feedback : It is the process of comparing an actual output with a desired
output for the purpose of improving the performance of the
system.

Field : A physical part of a database that can be packed with several
data items; the smallest unit of named application data
recognized by system software.

First Normal Form (1NF) : The first step in normalizing a relation in data used in a
database so that it contains no repeating groups.

Flow Chart : It is a pictorial representation that uses predefined symbols to
describe data flow and processing in either a business system
or the logic of a computer program.

232

Form : A form is the physical carrier of data. It can carry instructions
for action. It is classified by what it does in the system.

Fourth Generation
Programming (4GL)

: A Fourth-Generation Programming Language (4GL) is a
programming language or programming environment designed
with a specific purpose in mind, such as the development of
commercial business software.

Formal Test Planning : A formal test plan is a document that provides and records
important information about a test project.

Functional Dependency : Functional Dependency (FD) is a constraint between two sets
of attributes in a relation from a database. Given a relation R, a
set of attributes X in R is said to functionally determine another
attribute Y, also in R, (written X → Y) if and only if each X
value is associated with precisely one Y value. Customarily we
call X the determinant set and Y the dependent attribute. T

Goal : It is a very broadly stated purpose. Some examples are, the
goals of making profit; the goal of educating students.

Group Classification
Codes

: It designates major, intermediate and minor data classification
by successively assigning lower orders of digits.

Identification Code : It is a collection of characters used to identify a record of data.

Implementation
Planning

: Implementation planning is the first activity of the
development phase. After the initiation of the development
phase is approved, implementation planning begins.

Indexed File
Organization

: An indexed file contains records ordered by a record key. For
that reason, a second file is created that contains an index or
key for every record and the record’s location in the file.

Indexed Sequential File
Organization

: Indexed sequential files are a different kind of indexed files.
The indexes are pointers to the data file and the data is stored
sequentially in order by the key.

Information Resource
Management

: It is the concept that information is a major corporate resource
and must be managed using the same basic principles used to
manage other assets. This includes the effective management
and control of data/information as a shared resource to
improve its availability, accessibility and utilization.

Information Service
Request (ISR)

: An Information Service Request (ISR) is a formal request from
a user group for support from the information services
organization. It provides for statements of objectives and
anticipated benefits and for the description of inputs and
outputs.

Information Systems : Information systems are the computer systems designed to
store, transmit, retrieve, manipulate and display information
used in one or more business processes.

Interview : It is a common technique used to collect information from key
stakeholders in a software project. It can be performed in small
or large groups and in formal or informal settings.

Interface : A point at which the system meets its environment is called an
interface.

Joint Application
Design

: A Joint Application Development (JAD) is a methodology that
involves the end-users in the design and development of an
application to work more efficiently within a short period of
time.

233

Key : A key is one of the data items in a record used for identifying a
record.

Management
Information System

: A computer system designed to help managers plan and direct
business and organizational operations.

Normalization : It is a process of converting complex data structures into
simple, and stable data structures.

Object Modeling
Technique

: A technique used for identifying and modeling all the objects
making up a system.

Objectives : These are concrete and specific accomplishments necessary for
the achievements of goals. For example, an automobile
manufacturer must have as an objective the production of a
competitive product in order to achieve a profit goal.

Organization Chart : It is a flowchart that identifies the organizational elements of a
business and displays areas of responsibility and lines of
authority.

Open Systems : The systems that interact with their surrounding i.e., receive
input and produce output, are said to be open systems.

Performance Review
Board (PRB)

: A performance review board is established for ensuring system
integrity. In the PRB, both the user and information systems
are presented. A performance review board is a user oriented
board and is headed by the principal user.

PERT : PERT is a management planning and analysis tool that uses a
graphical display, called a network, to show relationships
between tasks that must be performed to accomplish an
objective.

Prototype : A prototype is a basic model of an information system,
especially designed for demonstration purposes or as part of a
development process.

Physical System : A physical system is an interconnection of physical
components that perform a specific function.

Post Installation Review
(PIR)

: A Post Installation Review should be conducted when there are
remaining discrepancy reports, deferred requirements for
future maintenance release, or any issues related to the system
operation.

Presentation : It is the process of presenting the content of a topic to an
audience.

Principal User : The principal user is the person who will accept or reject the
computer based business system. The principal user may be
the person who issues the project directive.

Process : It represents activities in which data is manipulated by being
stored or retrieved or transferred in some way.

Project Directive : Project directive is an authorized document that reflects the
results of discussions and decisions made during the review.

Primary Key : A primary key is one that uniquely identifies a record.

Qualifier : A qualifier is an association attribute.

Questionnaire : Questionnaire is a form containing a set of questions,
especially one addressed to a statistically significant number of
subjects as a way of gathering information for a survey.

234

Relational Database : A relational database is a database that groups data using
common attributes found in the data set.

Recurring Data Analysis
Sheet

: Recurring data analysis sheet is a form which is prepared with
the document names and identifying numbers.

Response Time : Response time is the time that elapses between the release of
input data by a user and receipt of computer output.

Run-time procedures : The run-time procedures are the steps and actions taken by the
system operators or the end-users who are interacting with the
system to achieve the desired results.

Second Normal Form
(2NF)

: When normalizing data for a database, the analyst ensures that
all the non-key attributes are fully dependent on the primary
key. All partial dependencies are removed and placed in
another relation.

Secondary key : A key that cannot uniquely identify a record can be used to
select a group of records that belong to a set.

Sequential Access : In sequential access, information in the file is processed in
order, one record after the other.

Sequential File
Organization

: A sequential file contains records organized in the order they
were entered (the first record written is the first record in the
file, the second record written is the second record in the file,
and so on).

Software Requirements
Specification (SRS)

 Software Requirements Specification (SRS) is a complete
description of the behavior of the software of the system to be
developed. It includes a set of use cases that describe all the
interactions the users will have with the software.

Stakeholder : A stakeholder is a person who has a share or an interest in an
enterprise i.e., a person holding property or owing an obligation
that is claimed by two or more adverse claimants and who has no
claim to or interest in the property or obligation.

Standards Manual : Standards are rules under which analysts, programmers,
operators and other personnel in information service
organization operate.

Structured English : It is the modified form of the English language used to specify
the logic of information system processes.

Structure Chart : Structure Chart in software engineering and organizational
theory is a chart that shows the breakdown of the configuration
system to the lowest manageable levels. In structure chart each
program module is represented by a rectangular box. Modules
at the top level of the structure chart call the modules at the
lower levels.

Structured
Programming

: Structured programming (sometimes known as modular
programming) is a subset of procedural programming that
enforces a logical structure on the program being written to
make it more efficient and easier to understand and modify.

Structured Analysis : It is a set of techniques and graphic tools that allow the
analysts to develop a new kind of system specification that is
easily understandable to the user.

Structured
Walk-through

: Structured reviews are a technique used in developing efficient
and reliable systems. A ‘structured walk-through’ is a technical
review to assist the technical people working on a project.

235

Study Phase Report : The study phase report is a comprehensive report prepared for
the user-sponsor of the system and presented at the conclusion
of the study phase.

Study Phase Review : The study phase review is a review for presenting the results of
the study phase activities and determining future action. It is
attended by the principal users and managers who will be
affected by the system.

System : An organized relationship among functioning units or
components.

Systems Analysis : It is the process of gathering and interpreting facts, diagnosing
problems, and using the information to recommend
improvements to the system.

System Analyst : System Analyst is a person responsible for studying the
requirements, feasibility, cost, design, specification, and
implementation of a computer based system for an
organization/business.

System Design : System design is one of the phases of System Development
Life Cycle (SDLC). It is the process or art of defining the
architecture, components, modules, interfaces, and data for a
system to satisfy specified requirements.

System Flowchart : It is a flowchart that describes the data flow for a data
processing system and provides a logical diagram of how the
system operates.

System Development
Life Cycle (SDLC)

: It is a logical process by which systems analysts, software
engineers, programmers, and end-users build information
systems and computer applications to solve business problems
and needs.

System Documentation : System documentation is the detailed information, in either
written or computerized form, about a computer system,
including its architecture, design, data flow and
programming logic.

System Performance
Definition

: System Performance definition is the transition from a
logical performance requirement to a physical one. The
process includes the statement of general constraints,
identification of specific objectives, and description of the
outputs to be provided.

System Verification : System Verification is the process of determining if the system
meets the conditions set forth at the beginning.

Third Normal Form
(3NF)

: A Table is in 3NF if and Only if both of the following
conditions hold: (i) The relation R (table) is in second normal
form, and (ii) Every non-prime attribute of R is
non-transitively dependent (i.e., directly dependent) on every
key of R.

Transitive dependency : A transitive dependency is one in which non-key attributes are
dependent on other non-key attributes.

Throughput Time : Throughput time is the time required for work to flow through
the machine room.

Top-down Computer
Program Development

: The top-down computer program development and testing
approach is a structured technique that starts with a general
description of the system and expands into successively greater
levels of detail.

236

Turnaround Time : Turnaround time is the time that elapses between data arrival at
the computing center and the availability of output for pick-up.

Use Case : A use case is a methodology used in system analysis to
identify, clarify and organize system requirements.

Use Case Diagram A use case diagram provides a graphical overview of the
functionality provided by a system in terms of actors, their
goals, and any dependencies between those use cases.

User Interface Design : User interface design is the design of computers, appliances,
machines, mobile communication devices, software
applications, and websites with the focus on the user's
experience and interaction.

User Turnover : It is the stage in the operation phase when the data processing
department assumes full responsibility for the system.

Unified Modeling
Language (UML)

: Unified Modeling Language (UML) is a standardized
general-purpose modeling language that provides a set of
tools to document the object-oriented analysis and design of a
software system.

Validation Software : Software that checks whether data input to the information
system is valid or not.

Visual Display Terminal
(VDT)

: VDT (video display terminal or sometimes visual display
terminal) is a term used, especially in ergonomic studies, for
computer display.

Bibliography

1. Elias, M. Awad. Systems Analysis and Design. 2nd ed. New Delhi: Galgotia Publications (P)
Ltd., 2002.

2. Igor Hawryszkiewycz. Systems Analysis and Design. 4th ed. New Delhi: Prentice-Hall of
India Private Limited, 2002.

3. James, A.O’ Brien. Management Information Systems. Managing Information Technology in
the E-Business Enterprise. 5th ed. New Delhi: Tata McGraw Hill, 2002.

4. Kenneth E. Kendall, and Julie E. Kendall. Systems Analysis and Design. 4th ed. New Delhi:
Prentice-Hall of India Private Limited, 2007.

5. Kenneth C. Laudon, and Jane P. Laudon. Management Information Systems, Managing The
Digital Firm. 8th ed. New Delhi: Prentice-Hall of India Private Limited, 2003.

6. Marvin Gore and John W. Stubbe. Elements of Systems Analysis. 4th ed. New Delhi: Galgotia
Publications (P) Ltd., 2003.

7. Rajaraman, V. Analysis and Design of Information Systems. 2nd ed. New Delhi:
Prentice-Hall of India Private Ltd., 2006.

8. Uma G. Gupta. Management Information Systems, A Managerial Perspective. 1st ed.,
New Delhi: Galgotia Publications (P) Ltd., 1998.

Websites

 http://books.google.co.in/

 http://www.ipipan.gda.pl/~marek/objects/TOA/OOMethod/mcr.html

 http://www.jqjacobs.net/edu/

 http://www.scribd.com/

 www.answers.com

 www.ce.sharif.edu

 www.cio.gov.bc.ca

 www.rabbit.eng.miami.edu

 www.saintmarys.edu

 www.ublib.boulder.ibm.com

 www.webopebia.com

	TITLE(new)
	C-WRITE NEW
	CONTENT
	CURRI
	Chp-1
	Chp-2
	Chp-3
	Chp-4
	Chp-5 NEW
	Chp-6
	Chp-7
	Chp-8
	Glossary
	Bibiliography

